scholarly journals Optimal Sensor Placement and Minimum Number Selection of Sensors for Health Monitoring of Transmission Towers

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Chuandi Zhou ◽  
Yibing Liu ◽  
Ji Wu ◽  
Chao Zhou

Transmission towers are structurally complex, which makes it challenging to choose the right place and number of sensors for health monitoring. In this paper, optimal sensor placement of a cat-head-type transmission tower is conducted by using the Effective Independent Method (EIM) and a method is proposed for calculating the minimum number of sensors for structural health monitoring by combining EIM and Modal Assurance Criterion (MAC). The method for calculating the number of sensors prescribed in this paper derives a curve that shows the relationship between MAC value and the number of sensors. It is found that the MAC value decreases with increase in the number of sensors. When the number of sensors reaches a certain threshold, the curve tends to stabilize. Then, the number of sensors corresponding to the minimum MAC is proposed as the minimum number of sensors. Through calculation, the minimum number of sensors of the cat-head-type transmission tower is obtained. Also, the optimal sensor placement results show that the position of a large number of sensors includes the position of a smaller number of sensors.

2020 ◽  
Vol 10 (21) ◽  
pp. 7710
Author(s):  
Tsung-Yueh Lin ◽  
Jin Tao ◽  
Hsin-Haou Huang

The objective of optimal sensor placement in a dynamic system is to obtain a sensor layout that provides as much information as possible for structural health monitoring (SHM). Whereas most studies use only one modal assurance criterion for SHM, this work considers two additional metrics, signal redundancy and noise ratio, combining into three optimization objectives: Linear independence of mode shapes, dynamic information redundancy, and vibration response signal strength. A modified multiobjective evolutionary algorithm was combined with particle swarm optimization to explore the optimal solution sets. In the final determination, a multiobjective decision-making (MODM) strategy based on distance measurement was used to optimize the aforementioned objectives. We applied it to a reduced finite-element beam model of a reference building and compared it with other selection methods. The results indicated that MODM suitably balanced the objective functions and outperformed the compared methods. We further constructed a three-story frame structure for experimentally validating the effectiveness of the proposed algorithm. The results indicated that complete structural modal information can be effectively obtained by applying the MODM approach to identify sensor locations.


2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Can He ◽  
Jianchun Xing ◽  
Juelong Li ◽  
Qiliang Yang ◽  
Ronghao Wang ◽  
...  

Optimal sensor placement (OSP) is an important part in the structural health monitoring. Due to the ability of ensuring the linear independence of the tested modal vectors, the minimum modal assurance criterion (minMAC) is considered as an effective method and is used widely. However, some defects are present in this method, such as the low modal energy and the long computation time. A new OSP method named IAGA-MMAC is presented in this study to settle the issue. First, a modified modal assurance criterion (MMAC) is proposed to improve the modal energy of the selected locations. Then, an improved adaptive genetic algorithm (IAGA), which uses the root mean square of off-diagonal elements in the MMAC matrix as the fitness function, is proposed to enhance computation efficiency. A case study of sensor placement on a numerically simulated wharf structure is provided to verify the effectiveness of the IAGA-MMAC strategy, and two different methods are used as contrast experiments. A comparison of these strategies shows that the optimal results obtained by the IAGA-MMAC method have a high modal strain energy, a quick computational speed, and small off-diagonal elements in the MMAC matrix.


2020 ◽  
pp. 136943322094719
Author(s):  
Xianrong Qin ◽  
Pengming Zhan ◽  
Chuanqiang Yu ◽  
Qing Zhang ◽  
Yuantao Sun

Optimal sensor placement is an important component of a reliability structural health monitoring system for a large-scale complex structure. However, the current research mainly focuses on optimizing sensor placement problem for structures without any initial sensor layout. In some cases, the experienced engineers will first determine the key position of whole structure must place sensors, that is, initial sensor layout. Moreover, current genetic algorithm or partheno-genetic algorithm will change the position of the initial sensor locations in the iterative process, so it is unadaptable for optimal sensor placement problem based on initial sensor layout. In this article, an optimal sensor placement method based on initial sensor layout using improved partheno-genetic algorithm is proposed. First, some improved genetic operations of partheno-genetic algorithm for sensor placement optimization with initial sensor layout are presented, such as segmented swap, reverse and insert operator to avoid the change of initial sensor locations. Then, the objective function for optimal sensor placement problem is presented based on modal assurance criterion, modal energy criterion, and sensor placement cost. At last, the effectiveness and reliability of the proposed method are validated by a numerical example of a quayside container crane. Furthermore, the sensor placement result with the proposed method is better than that with effective independence method without initial sensor layout and the traditional partheno-genetic algorithm.


2017 ◽  
Vol 140 ◽  
pp. 213-224 ◽  
Author(s):  
Chen Yang ◽  
Xuepan Zhang ◽  
Xiaoqi Huang ◽  
ZhengAi Cheng ◽  
Xinghua Zhang ◽  
...  

2010 ◽  
Author(s):  
Gwendolyn W. van der Linden ◽  
Abbas Emami-Naeini ◽  
Robert L. Kosut ◽  
Hassan Sederat ◽  
Jerome P. Lynch

2011 ◽  
Vol 2011 ◽  
pp. 1-12 ◽  
Author(s):  
Ting-Hua Yi ◽  
Hong-Nan Li ◽  
Ming Gu

Optimal sensor placement (OSP) technique plays a key role in the structural health monitoring (SHM) of large-scale structures. Based on the criterion of the OSP for the modal test, an improved genetic algorithm, called “generalized genetic algorithm (GGA)”, is adopted to find the optimal placement of sensors. The dual-structure coding method instead of binary coding method is proposed to code the solution. Accordingly, the dual-structure coding-based selection scheme, crossover strategy and mutation mechanism are given in detail. The tallest building in the north of China is implemented to demonstrate the feasibility and effectiveness of the GGA. The sensor placements obtained by the GGA are compared with those by exiting genetic algorithm, which shows that the GGA can improve the convergence of the algorithm and get the better placement scheme.


Sign in / Sign up

Export Citation Format

Share Document