scholarly journals Solving the Set Packing Problem via a Maximum Weighted Independent Set Heuristic

2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Ruizhi Li ◽  
Yupan Wang ◽  
Shuli Hu ◽  
Jianhua Jiang ◽  
Dantong Ouyang ◽  
...  

The set packing problem (SPP) is a significant NP-hard combinatorial optimization problem with extensive applications. In this paper, we encode the set packing problem as the maximum weighted independent set (MWIS) problem and solve the encoded problem with an efficient algorithm designed to the MWIS problem. We compare the independent set-based method with the state-of-the-art algorithms for the set packing problem on the 64 standard benchmark instances. The experimental results show that the independent set-based method is superior to the existing algorithms in terms of the quality of the solutions and running time obtained the solutions.

Author(s):  
M. A. Basmassi ◽  
L. Benameur ◽  
J. A. Chentoufi

Abstract. In this paper, a modified genetic algorithm based on greedy sequential algorithm is presented to solve combinatorial optimization problem. The algorithm proposed here is a hybrid of heuristic and computational intelligence algorithm where greedy sequential algorithm is used as operator inside genetic algorithm like crossover and mutation. The greedy sequential function is used to correct non realizable solution after crossover and mutation which contribute to increase the rate of convergence and upgrade the population by improving the quality of chromosomes toward the chromatic number. Experiments on a set of 6 well-known DIMACS benchmark instances of graph coloring problem to test this approach show that the proposed algorithm achieves competitive results in comparison with three states of art algorithms in terms of either success rate and solution quality.


2008 ◽  
Vol 16 (1) ◽  
pp. 127-147 ◽  
Author(s):  
Anton V. Eremeev

We consider the optimization problem of finding the best possible offspring as a result of a recombination operator in an evolutionary algorithm, given two parent solutions. The optimal recombination is studied in the case where a vector of binary variables is used as a solution encoding. By means of efficient reductions of the optimal recombination problems (ORPs) we show the polynomial solvability of the ORPs for the maximum weight set packing problem, the minimum weight set partition problem, and for linear Boolean programming problems with at most two variables per inequality, and some other problems. We also identify several NP-hard cases of optimal recombination: the Boolean linear programming problems with three variables per inequality, the knapsack, the set covering, the p-median, and some other problems.


Author(s):  
Shaowei Cai ◽  
Chuan Luo ◽  
Haochen Zhang

Maximum Satisfiability (MaxSAT) is an important NP-hard combinatorial optimization problem with many applications and MaxSAT solving has attracted much interest. This work proposes a new incomplete approach to MaxSAT. We propose a novel decimation algorithm for MaxSAT, and then combine it with a local search algorithm. Our approach works by interleaving between the decimation algorithm and the local search algorithm, with useful information passed between them. Experiments show that our solver DeciLS achieves state of the art performance on all unweighted benchmarks from the MaxSAT Evaluation 2016. Moreover, compared to SAT-based MaxSAT solvers which dominate industrial benchmarks for years, it performs better on industrial benchmarks and significantly better on application formulas from SAT Competition. We also extend this approach to (Weighted) Partial MaxSAT, and the resulting solvers significantly improve local search solvers on crafted and industrial benchmarks, and are complementary (better on WPMS crafted benchmarks) to SAT-based solvers.


2017 ◽  
Vol 1 (1) ◽  
pp. 35-49 ◽  
Author(s):  
Duarte Nuno Gonçalves Ferreira

The Rectangular Bin-packing Problem, also known as The Two-dimensional Bin-packing Problem (2DBPP), is a well-known combinatorial optimization problem which is the problem of orthogonally packing a given set of rectangles into a minimum number of two-dimensional rectangular bins. In this article we benchmark four heuristics: constructive, based on a First Fit Decreasing strategy, local search using a greedy packing First-Fit algorithm, Simulated Annealing with multiple cooling values and Genetic Algorithm. All implementations are written in Python, run using the Pypy environment and the new multiprocessing module. All implementations were tested using the Berkey and Wang and Martelo and Vigo Benchmark Instances.


Author(s):  
B. Vallet ◽  
B. Soheilian ◽  
M. Brédif

The 3D reconstruction of similar 3D objects detected in 2D faces a major issue when it comes to grouping the 2D detections into clusters to be used to reconstruct the individual 3D objects. Simple clustering heuristics fail as soon as similar objects are close. This paper formulates a framework to use the geometric quality of the reconstruction as a hint to do a proper clustering. We present a methodology to solve the resulting combinatorial optimization problem with some simplifications and approximations in order to make it tractable. The proposed method is applied to the reconstruction of 3D traffic signs from their 2D detections to demonstrate its capacity to solve ambiguities.


2018 ◽  
Vol 54(5) ◽  
pp. 72
Author(s):  
Quoc, H.D. ◽  
Kien, N.T. ◽  
Thuy, T.T.C. ◽  
Hai, L.H. ◽  
Thanh, V.N.

2011 ◽  
Vol 412 (18) ◽  
pp. 1745-1753 ◽  
Author(s):  
Jianxin Wang ◽  
Qilong Feng ◽  
Jianer Chen

Sign in / Sign up

Export Citation Format

Share Document