scholarly journals Pressure Transient Analysis for a Horizontal Well in Heterogeneous Carbonate Reservoirs Using a Linear Composite Model

2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Yong-Gang Duan ◽  
Ke-Yi Ren ◽  
Quan-Tang Fang ◽  
Ming-Qiang Wei ◽  
Morteza Dejam ◽  
...  

Carbonate reservoirs usually have strong anisotropy. Oil and gas recovery from fractured reservoirs is highly challenging due to complicated mechanisms involved in production from these reservoirs. A horizontal well completed in these reservoirs may extend through multiple zones, including homogeneous, dual-porosity, and triple-porosity formations. Traditional well test models assume that the entire length of a horizontal or multilateral well remains in the same formation with uniform properties. A well test model for pressure transient analysis of horizontal wells extending through a carbonate reservoir consisting of natural fractures, rock matrix, and vugs with different properties is presented in this study. The focus of this study is on dual-porosity (fracture-matrix) and triple-porosity (fracture-matrix-vug) reservoirs, considering the pseudosteady interporosity flows from rock matrix and vugs into fractures. A multizone triple-porosity model was established and solved by using the point source function, Green’s function, and coupling of multiple reservoir sections. The corresponding type curves were developed, and sensitivity analysis was carried out. The type curves of flow stage division reveal that a horizontal well traversing a three-section reservoir including homogeneous, dual-porosity (fracture-matrix)/triple-porosity (fracture-vug-matrix), and homogeneous sections identifies the stages of pseudosteady interporosity flow from matrix and vug into fracture, fracture pseudoradial flow, system linear flow, system pseudoradial flow, and pseudosteady flow occur in sequence. The greater the difference of permeability between the dual-porosity/triple-porosity section and the two homogeneous sections, the more obvious the interporosity flow on the pressure derivative curve. This approach satisfies the need for pressure transient analysis for a horizontal well that traverses two or more regions with distinct properties in heterogeneous carbonate reservoirs.

2021 ◽  
pp. 1-20
Author(s):  
Cuiqiao Xing ◽  
Hongjun Yin ◽  
Hongfei Yuan ◽  
Jing Fu ◽  
Guohan Xu

Abstract Fractured vuggy carbonate reservoirs are highly heterogeneous and non-continuous, and contains not only erosion pores and fractures but also the vugs. Unfortunately, the current well test model cannot be used to analyze fractured-vuggy carbonate reservoirs, due to the limitations of actual geological characteristics. To solve the above-mentioned problem, a pressure transient analysis model for fracture-cavity carbonate reservoir with radial composite reservoir that the series multi-sacle fractures and caves exist and dual-porosity medium (fracture and erosion pore) is established in this paper, which is suitable for fractured vuggy reservoirs. Laplace transformation is used to alter and solve the mathematical model. The main fractures' linear flow and the radial flow of caves drainage area are solved by coupling. The pressure-transient curves of the bottomhole have been obtained with the numerical inversion algorithms. The typical curves for well test model which has been established are drawn, and flow periods are analyzed. The sensitivity analysis for different parameters is analyzed. The variation characteristic of typical curves is by the theoretical analysis. With the increasing of fracture length, the time of linear flow is increased. While the cave radius is the bigger, the convex and concave of the curve is the larger. As a field example, actual test data is analyzed by the established model. An efficient well test analysis model is developed, and it can be used to interpret the actual pressure data for fracture-cavity carbonate reservoirs.


DYNA ◽  
2019 ◽  
Vol 86 (210) ◽  
pp. 108-114
Author(s):  
Freddy Humberto Escobar ◽  
Angela María Palomino ◽  
Alfredo Ghisays Ruiz

Flow behind the casing has normally been identified and quantified using production logging tools. Very few applications of pressure transient analysis, which is much cheaper, have been devoted to determining compromised cemented zones. In this work, a methodology for a well test interpretation for determining conductivity behind the casing is developed. It provided good results with synthetic examples.


1996 ◽  
Author(s):  
Marcel J. Bourgeois ◽  
Jean-Luc Boutaud de la Combe ◽  
Renaud M. Deboaisne

Sign in / Sign up

Export Citation Format

Share Document