scholarly journals Fixed-Point Theorem for Isometric Self-Mappings

Author(s):  
Joseph Frank Gordon

In this paper, we derive a fixed-point theorem for self-mappings. That is, it is shown that every isometric self-mapping on a weakly compact convex subset of a strictly convex Banach space has a fixed point.

1976 ◽  
Vol 19 (1) ◽  
pp. 7-12 ◽  
Author(s):  
Joseph Bogin

In [7], Goebel, Kirk and Shimi proved the following:Theorem. Let X be a uniformly convex Banach space, K a nonempty bounded closed and convex subset of X, and F:K→K a continuous mapping satisfying for each x, y∈K:(1)where ai≥0 and Then F has a fixed point in K.In this paper we shall prove that this theorem remains true in any Banach space X, provided that K is a nonempty, weakly compact convex subset of X and has normal structure (see Definition 1 below).


Author(s):  
Brian Fisher ◽  
Salvatore Sessa

We consider two selfmapsTandIof a closed convex subsetCof a Banach spaceXwhich are weakly commuting inX, i.e.‖TIx−ITx‖≤‖Ix−Tx‖   for   any   x   in   X,and satisfy the inequality‖Tx−Ty‖≤a‖Ix−Iy‖+(1−a)max{‖Tx−Ix‖,‖Ty−Iy‖}for allx,yinC, where0<a<1. It is proved that ifIis linear and non-expansive inCand such thatICcontainsTC, thenTandIhave a unique common fixed point inC.


Author(s):  
Michael Edelstein ◽  
Daryl Tingley

AbstractSeveral procedures for locating fixed points of nonexpansive selfmaps of a weakly compact convex subset of a Banach space are presented. Some of the results involve the notion of an asymptotic center or a Chebyshev center.


2020 ◽  
Vol 52 (1) ◽  
Author(s):  
Shueh-Inn Hu ◽  
Thakyin Hu

Suppose $X$ is a Banach space and $K$ is a compact convex subset of $X$. Let $\mathcal{F}$ be a commutative family of continuous affine mappings of $K$ into $K$. It follows from Markov-Kakutani Theorem that $\mathcal{F}$ has a common fixed point in $K$. Suppose now $(CC(X), h)$ is the corresponding hyperspace of $X$ containing all compact, convex subsets of $X$ endowed with Hausdorff metric $h$. We shall prove the above version of Markov-Kakutani Theorem is valid on the hyperspace $(CC(X), h)$.


Author(s):  
Jürgen Schu

AbstractLet A be a subset of a Banach space E. A mapping T: A →A is called asymptoically semicontractive if there exists a mapping S: A×A→A and a sequence (kn) in [1, ∞] such that Tx=S(x, x) for all x ∈A while for each fixed x ∈A, S(., x) is asymptotically nonexpansive with sequence (kn) and S(x,.) is strongly compact. Among other things, it is proved that each asymptotically semicontractive self-mpping T of a closed bounded and convex subset A of a uniformly convex Banach space E which satisfies Opial's condition has a fixed point in A, provided s has a certain asymptoticregurity property.


2010 ◽  
Vol 2010 ◽  
pp. 1-11 ◽  
Author(s):  
M. I. Berenguer ◽  
D. Gámez ◽  
A. I. Garralda-Guillem ◽  
M. C. Serrano Pérez

We obtain an approximation of the solution of the nonlinear Volterra integral equation of the second kind, by means of a new method for its numerical resolution. The main tools used to establish it are the properties of a biorthogonal system in a Banach space and the Banach fixed point theorem.


Sign in / Sign up

Export Citation Format

Share Document