scholarly journals Multimode Process Monitoring Method Based on Multiblock Projection Nonnegative Matrix Factorization

2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Yan Wang ◽  
Yu-Bo Zhao ◽  
Chuang Li ◽  
Chuan-Qian Zhu ◽  
Shuai-shuai Han ◽  
...  

A multimode process monitoring method based on multiblock projection nonnegative matrix factorization (MPNMF) is proposed for traditional process monitoring methods which often adopt global model of data and ignore local information of data. Firstly, the training data set of each mode is partitioned by the complete link algorithm and the multivariate data space is divided into several subblocks. Then, the projection nonnegative matrix factorization (PNMF) algorithm is used to model each subspace of each mode separately. A joint probabilistic statistic index is defined to identify the running modes of the process data. Finally, the Bayesian information criterion (BIC) is used to synthesize the statistics of each subblock and construct a new statistic for process monitoring. The proposed process monitoring method is applied to the TE process to verify its effectiveness.

2006 ◽  
Vol 95 (4) ◽  
pp. 2199-2212 ◽  
Author(s):  
Matthew C. Tresch ◽  
Vincent C. K. Cheung ◽  
Andrea d'Avella

Several recent studies have used matrix factorization algorithms to assess the hypothesis that behaviors might be produced through the combination of a small number of muscle synergies. Although generally agreeing in their basic conclusions, these studies have used a range of different algorithms, making their interpretation and integration difficult. We therefore compared the performance of these different algorithms on both simulated and experimental data sets. We focused on the ability of these algorithms to identify the set of synergies underlying a data set. All data sets consisted of nonnegative values, reflecting the nonnegative data of muscle activation patterns. We found that the performance of principal component analysis (PCA) was generally lower than that of the other algorithms in identifying muscle synergies. Factor analysis (FA) with varimax rotation was better than PCA, and was generally at the same levels as independent component analysis (ICA) and nonnegative matrix factorization (NMF). ICA performed very well on data sets corrupted by constant variance Gaussian noise, but was impaired on data sets with signal-dependent noise and when synergy activation coefficients were correlated. Nonnegative matrix factorization (NMF) performed similarly to ICA and FA on data sets with signal-dependent noise and was generally robust across data sets. The best algorithms were ICA applied to the subspace defined by PCA (ICAPCA) and a version of probabilistic ICA with nonnegativity constraints (pICA). We also evaluated some commonly used criteria to identify the number of synergies underlying a data set, finding that only likelihood ratios based on factor analysis identified the correct number of synergies for data sets with signal-dependent noise in some cases. We then proposed an ad hoc procedure, finding that it was able to identify the correct number in a larger number of cases. Finally, we applied these methods to an experimentally obtained data set. The best performing algorithms (FA, ICA, NMF, ICAPCA, pICA) identified synergies very similar to one another. Based on these results, we discuss guidelines for using factorization algorithms to analyze muscle activation patterns. More generally, the ability of several algorithms to identify the correct muscle synergies and activation coefficients in simulated data, combined with their consistency when applied to physiological data sets, suggests that the muscle synergies found by a particular algorithm are not an artifact of that algorithm, but reflect basic aspects of the organization of muscle activation patterns underlying behaviors.


2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Niu Yuguang ◽  
Wang Shilin ◽  
Du Ming

The presence of sets of incomplete measurements is a significant issue in the real-world application of multivariate statistical process monitoring models for industrial process fault detection. Since the missing data in the incomplete measurements are usually correlated with some of the available variables, these measurements can be used if an efficient algorithm is presented. To resolve the problem, a novel method combining Markov chain model and generalized projection nonnegative matrix factorization (MCM-GPNMF) is proposed to detect and diagnose the faults in industrial process. The basic idea of the approach is to use MCM-GPNMF to extract the dominant variables from incomplete process data and to combine them with statistical process monitoring techniques. TG2 and SPEG statistics are defined as online monitoring quantities for fault detection and corresponding contribution plots are also considered for fault isolation. The proposed method is applied to a 1000 MW unit boiler process. The simulation results clearly illustrate the feasibility of the proposed method.


2016 ◽  
Vol 70 (9) ◽  
pp. 1464-1475 ◽  
Author(s):  
Robert Luce ◽  
Peter Hildebrandt ◽  
Uwe Kuhlmann ◽  
Jörg Liesen

The key challenge of time-resolved Raman spectroscopy is the identification of the constituent species and the analysis of the kinetics of the underlying reaction network. In this work we present an integral approach that allows for determining both the component spectra and the rate constants simultaneously from a series of vibrational spectra. It is based on an algorithm for nonnegative matrix factorization that is applied to the experimental data set following a few pre-processing steps. As a prerequisite for physically unambiguous solutions, each component spectrum must include one vibrational band that does not significantly interfere with the vibrational bands of other species. The approach is applied to synthetic “experimental” spectra derived from model systems comprising a set of species with component spectra differing with respect to their degree of spectral interferences and signal-to-noise ratios. In each case, the species involved are connected via monomolecular reaction pathways. The potential and limitations of the approach for recovering the respective rate constants and component spectra are discussed.


2009 ◽  
Vol 21 (9) ◽  
pp. 2605-2633 ◽  
Author(s):  
Kenji Hosoda ◽  
Masataka Watanabe ◽  
Heiko Wersing ◽  
Edgar Körner ◽  
Hiroshi Tsujino ◽  
...  

Object representation in the inferior temporal cortex (IT), an area of visual cortex critical for object recognition in the primate, exhibits two prominent properties: (1) objects are represented by the combined activity of columnar clusters of neurons, with each cluster representing component features or parts of objects, and (2) closely related features are continuously represented along the tangential direction of individual columnar clusters. Here we propose a learning model that reflects these properties of parts-based representation and topographic organization in a unified framework. This model is based on a nonnegative matrix factorization (NMF) basis decomposition method. NMF alone provides a parts-based representation where nonnegative inputs are approximated by additive combinations of nonnegative basis functions. Our proposed model of topographic NMF (TNMF) incorporates neighborhood connections between NMF basis functions arranged on a topographic map and attains the topographic property without losing the parts-based property of the NMF. The TNMF represents an input by multiple activity peaks to describe diverse information, whereas conventional topographic models, such as the self-organizing map (SOM), represent an input by a single activity peak in a topographic map. We demonstrate the parts-based and topographic properties of the TNMF by constructing a hierarchical model for object recognition where the TNMF is at the top tier for learning high-level object features. The TNMF showed better generalization performance over NMF for a data set of continuous view change of an image and more robustly preserving the continuity of the view change in its object representation. Comparison of the outputs of our model with actual neural responses recorded in the IT indicates that the TNMF reconstructs the neuronal responses better than the SOM, giving plausibility to the parts-based learning of the model.


Sign in / Sign up

Export Citation Format

Share Document