scholarly journals Using Evolving ANN-Based Algorithm Models for Accurate Meteorological Forecasting Applications in Vietnam

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Tim Chen ◽  
N. Kapron ◽  
J. C.-Y. Chen

The reproduction of meteorological tsunamis utilizing physically based hydrodynamic models is complicated in light of the fact that it requires large amounts of information, for example, for modelling the limits of hydrological and water driven time arrangement, stream geometry, and balanced coefficients. Accordingly, an artificial neural network (ANN) strategy utilizing a backpropagation neural network (BPNN) and a radial basis function neural network (RBFNN) is perceived as a viable option for modelling and forecasting the maximum peak and variation with time of meteorological tsunamis in the Mekong estuary in Vietnam. The parameters, including both the nearby climatic weights and the wind field factors, for finding the most extreme meteorological waves, are first examined, through the preparation of evolved neural systems. The time series of meteorological tsunamis were used for training and testing the models, and data for three cyclones were used for model prediction. Given the 22 selected meteorological tidal waves, the exact constants for the Mekong estuary, acquired through relapse investigation, are A = 9.5 × 10−3 and B = 31 × 10−3. Results showed that both the Multilayer Perceptron Network (MLP) and evolved radial basis function (ERBF) methods are capable of predicting the time variation of meteorological tsunamis, and the best topologies of the MLP and ERBF are I3H8O1 and I3H10O1, respectively. The proposed advanced ANN time series model is anything but difficult to use, utilizing display and prediction tools for simulating the time variation of meteorological tsunamis.

2019 ◽  
Vol 53 (6) ◽  
pp. 27-34
Author(s):  
Tim Chen ◽  
C.Y.J. Chen

AbstractThe reproduction of meteorological waves utilizing physically based hydrodynamic models is very difficult in light of the fact that it requires enormous amounts of information, for example, hydrological and water-driven time arrangement limits, stream geometry, and balance coefficients. Accordingly, an artificial neural network (ANN) strategy utilizing a back-propagation neural network (BPNN) and a radial basis function neural network (RBFNN) is perceived as a viable option for modeling and forecasting the maximum and time variation of meteorological tsunamis in the Mekong Estuary in Vietnam. The parameters, including both the nearby climatic and breeze field factors, for finding the most extreme meteorological waves are first examined, depending on the preparation of the evolved neural systems. The time series for meteorological tsunamis are used for training and testing the models, and data for three cyclones are used for model prediction. This study finds that the proposed advanced ANN time series model is easy to utilize with display and prediction tools for simulating the time variation of meteorological tsunamis.


2012 ◽  
Vol 182-183 ◽  
pp. 1358-1361
Author(s):  
Le Xiao ◽  
Min Peng Hu

According to the fact that the use of electricity in grain depot is nonlinear time series, the article introduces the prediction model of electricity based on Radial Basis Function Neural Network, and conducts the modeling and prediction by adopting the historical electricity consumption of a typical grain depot. As the result of simulation shows, the model obtains better forecasting results in grain depot electricity.


eLEKTRIKA ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 21
Author(s):  
Mukti Dwi Cahyo ◽  
Sri Heranurweni ◽  
Harmini Harmini

Electric power is one of the main needs of society today, ranging from household consumers to industry. The demand for electricity increases every year. So as to achieve adjustments between power generation and power demand, the electricity provider (PLN) must know the load needs or electricity demand for some time to come. There are many studies on the prediction of electricity loads in electricity, but they are not specific to each consumer sector. One of the predictions of this electrical load can be done using the Radial Basis Function Artificial Neural Network (ANN) method. This method uses training data learning from 2010 - 2017 as a reference data. Calculations with this method are based on empirical experience of electricity provider planning which is relatively difficult to do, especially in terms of corrections that need to be made to changes in load. This study specifically predicts the electricity load in the Semarang Rayon network service area in 2019-2024. The results of this Artificial Neural Network produce projected electricity demand needs in 2019-2024 with an average annual increase of 1.01% and peak load in 2019-2024. The highest peak load in 2024 and the dominating average is the household sector with an increase of 1% per year. The accuracy results of the Radial Basis Function model reached 95%.


Sign in / Sign up

Export Citation Format

Share Document