scholarly journals Ground State Solution for an Autonomous Nonlinear Schrödinger System

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Min Liu ◽  
Jiu Liu

In this paper, we study the following autonomous nonlinear Schrödinger system (discussed in the paper), where λ , μ , and ν are positive parameters; 2 ∗ = 2 N / N − 2 is the critical Sobolev exponent; and f satisfies general subcritical growth conditions. With the help of the Pohožaev manifold, a ground state solution is obtained.

2020 ◽  
Vol 20 (3) ◽  
pp. 511-538 ◽  
Author(s):  
Lin Li ◽  
Patrizia Pucci ◽  
Xianhua Tang

AbstractIn this paper, we study the existence of ground state solutions for the nonlinear Schrödinger–Bopp–Podolsky system with critical Sobolev exponent\left\{\begin{aligned} \displaystyle{}{-}\Delta u+V(x)u+q^{2}\phi u&% \displaystyle=\mu|u|^{p-1}u+|u|^{4}u&&\displaystyle\phantom{}\mbox{in }\mathbb% {R}^{3},\\ \displaystyle{-}\Delta\phi+a^{2}\Delta^{2}\phi&\displaystyle=4\pi u^{2}&&% \displaystyle\phantom{}\mbox{in }\mathbb{R}^{3},\end{aligned}\right.where {\mu>0} is a parameter and {2<p<5}. Under certain assumptions on V, we prove the existence of a nontrivial ground state solution, using the method of the Pohozaev–Nehari manifold, the arguments of Brézis–Nirenberg, the monotonicity trick and a global compactness lemma.


2021 ◽  
pp. 1-19
Author(s):  
Jing Zhang ◽  
Lin Li

In this paper, we consider the following Schrödinger equation (0.1) − Δ u − μ u | x | 2 + V ( x ) u = K ( x ) | u | 2 ∗ − 2 u + f ( x , u ) , x ∈ R N , u ∈ H 1 ( R N ) , where N ⩾ 4, 0 ⩽ μ < μ ‾, μ ‾ = ( N − 2 ) 2 4 , V is periodic in x, K and f are asymptotically periodic in x, we take advantage of the generalized Nehari manifold approach developed by Szulkin and Weth to look for the ground state solution of (0.1).


2013 ◽  
Vol 2013 ◽  
pp. 1-9
Author(s):  
Yujuan Jiao ◽  
Yanli Wang

We are concerned with the following modified nonlinear Schrödinger system:-Δu+u-(1/2)uΔ(u2)=(2α/(α+β))|u|α-2|v|βu,  x∈Ω,  -Δv+v-(1/2)vΔ(v2)=(2β/(α+β))|u|α|v|β-2v,  x∈Ω,  u=0,  v=0,  x∈∂Ω, whereα>2,  β>2,  α+β<2·2*,  2*=2N/(N-2)is the critical Sobolev exponent, andΩ⊂ℝN  (N≥3)is a bounded smooth domain. By using the perturbation method, we establish the existence of both positive and negative solutions for this system.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Jing Zhang

AbstractIn this article, we consider the following quasilinear Schrödinger–Poisson system $$ \textstyle\begin{cases} -\Delta u+V(x)u-u\Delta (u^{2})+K(x)\phi (x)u=g(x,u), \quad x\in \mathbb{R}^{3}, \\ -\Delta \phi =K(x)u^{2}, \quad x\in \mathbb{R}^{3}, \end{cases} $$ { − Δ u + V ( x ) u − u Δ ( u 2 ) + K ( x ) ϕ ( x ) u = g ( x , u ) , x ∈ R 3 , − Δ ϕ = K ( x ) u 2 , x ∈ R 3 , where $V,K:\mathbb{R}^{3}\rightarrow \mathbb{R}$ V , K : R 3 → R and $g:\mathbb{R}^{3}\times \mathbb{R}\rightarrow \mathbb{R}$ g : R 3 × R → R are continuous functions; g is of subcritical growth and has some monotonicity properties. The purpose of this paper is to find the ground state solution of (0.1), i.e., a nontrivial solution with the least possible energy by taking advantage of the generalized Nehari manifold approach, which was proposed by Szulkin and Weth. Furthermore, infinitely many geometrically distinct solutions are gained while g is odd in u.


2018 ◽  
Vol 9 (1) ◽  
pp. 108-123 ◽  
Author(s):  
Claudianor O. Alves ◽  
Grey Ercole ◽  
M. Daniel Huamán Bolaños

Abstract We prove the existence of at least one ground state solution for the semilinear elliptic problem \left\{\begin{aligned} \displaystyle-\Delta u&\displaystyle=u^{p(x)-1},\quad u% >0,\quad\text{in}\ G\subseteq\mathbb{R}^{N},\ N\geq 3,\\ \displaystyle u&\displaystyle\in D_{0}^{1,2}(G),\end{aligned}\right. where G is either {\mathbb{R}^{N}} or a bounded domain, and {p\colon G\to\mathbb{R}} is a continuous function assuming critical and subcritical values.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Kazuhiro Kurata ◽  
Yuki Osada

<p style='text-indent:20px;'>In this paper, we consider the asymptotic behavior of the ground state and its energy for the nonlinear Schrödinger system with three wave interaction on the parameter <inline-formula><tex-math id="M1">\begin{document}$ \gamma $\end{document}</tex-math></inline-formula> as <inline-formula><tex-math id="M2">\begin{document}$ \gamma \to \infty $\end{document}</tex-math></inline-formula>. In addition we prove the existence of the positive threshold <inline-formula><tex-math id="M3">\begin{document}$ \gamma^* $\end{document}</tex-math></inline-formula> such that the ground state is a scalar solution for <inline-formula><tex-math id="M4">\begin{document}$ 0 \le \gamma &lt; \gamma^* $\end{document}</tex-math></inline-formula> and is a vector solution for <inline-formula><tex-math id="M5">\begin{document}$ \gamma &gt; \gamma^* $\end{document}</tex-math></inline-formula>.</p>


Author(s):  
Jing Chen ◽  
Yiqing Li

In this paper, we dedicate to studying the following semilinear Schrödinger system equation*-Δu+V1(x)u=Fu(x,u,v)amp;mboxin~RN,r-Δv+V2(x)v=Fv(x,u,v)amp;mboxin~RN,ru,v∈H1(RN),endequation* where the potential Vi are periodic in x,i=1,2, the nonlinearity F is allowed super-quadratic at some x ∈ R N and asymptotically quadratic at the other x ∈ R N . Under a local super-quadratic condition of F, an approximation argument and variational method are used to prove the existence of Nehari–Pankov type ground state solutions and the least energy solutions.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Mohammad Ali Husaini ◽  
Chuangye Liu

<p style='text-indent:20px;'>In this paper, we study the following coupled nonlinear Schrödinger system of the form</p><p style='text-indent:20px;'><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ \left\{\begin{array}{l} -\Delta u_i-\kappa_iu_i = g_i(u_i)+\lambda\partial_iF(\vec{u}), \\ \vec{u} = (u_1,u_2,\cdots,u_m), u_i\in D_0^{1,2}(\Omega), \end{array}\right. $\end{document} </tex-math></disp-formula></p><p style='text-indent:20px;'>for <inline-formula><tex-math id="M1">\begin{document}$ m = 2,3 $\end{document}</tex-math></inline-formula>, where <inline-formula><tex-math id="M2">\begin{document}$ \Omega\subset \mathbb{R}^N $\end{document}</tex-math></inline-formula> is a bounded domain or <inline-formula><tex-math id="M3">\begin{document}$ \mathbb{R}^N $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M4">\begin{document}$ N\geq 3 $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M5">\begin{document}$ F(t_1,t_2\cdots,t_m)\in C^1(\mathbb{R}^m,\mathbb{R}) $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M6">\begin{document}$ \kappa_i\in\mathbb{R} $\end{document}</tex-math></inline-formula>, <inline-formula><tex-math id="M7">\begin{document}$ g_i\in C(\mathbb{R}) \ (i = 1,2,\cdots,m) $\end{document}</tex-math></inline-formula> and <inline-formula><tex-math id="M8">\begin{document}$ \lambda&gt;0 $\end{document}</tex-math></inline-formula> is large enough. In this work we mainly focus on the existence of fully nontrivial ground-state solutions and synchronized ground-state solutions under certain conditions.</p>


Sign in / Sign up

Export Citation Format

Share Document