scholarly journals Finite Element Analysis of a Novel Anterior Locking Plate for Thoracolumbar Burst Fracture

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Pengcheng Ren ◽  
Xiaodong Cheng ◽  
Chongyao Lu ◽  
Haotian Wu ◽  
Shuangquan Yao ◽  
...  

Purpose. The finite element analysis method was used to explore the biomechanical stability of a novel locking plate for thoracolumbar burst fracture fusion fixation. Methods. The thoracolumbar CT imaging data from a normal volunteer was imported into finite software to build a normal model and three different simulated surgical models (the traditional double-segment fixation model A, the novel double-segment fixation model B, and the novel single-segment fixation model C). An axial pressure (500 N) and a torque (10 Nm) were exerted on the end plate of T12 to simulate activity of the spine. We recorded the range of motion (ROM) and the maximum stress value of the simulated cages and internal fixations. Results. Model A has a larger ROM in all directions than model B (flexion 5.63%, extension 38.21%, left rotation 46.51%, right rotation 39.76%, left bending 9.45%, and right bending 11.45%). Model C also has a larger ROM in all directions than model B (flexion 555.63%, extension 51.42%, left rotation 56.98%, right rotation 55.42%, left bending 65.67%, and right bending 59.47%). The maximum stress of the cage in model A is smaller than that in model B except for the extension direction (flexion 96.81%, left rotation 175.96%, right rotation 265.73%, left bending 73.73%, and right bending 171.28%). The maximum stress value of the internal fixation in model A is greater than that in model B when models move in flexion (20.23%), extension (117.43%), and left rotation (21.34%). Conclusion. The novel locking plate has a smaller structure and better performance in biomechanical stability, which may be more compatible with minimally invasive spinal tubular technology.

2019 ◽  
Vol 128 ◽  
pp. e1109-e1117 ◽  
Author(s):  
Recep Basaran ◽  
Mustafa Efendioglu ◽  
Mustafa Kaksi ◽  
Talip Celik ◽  
İbrahim Mutlu ◽  
...  

2021 ◽  
Vol 11 (7) ◽  
pp. 3243
Author(s):  
Cheol-Jeong Kim ◽  
Seung Min Son ◽  
Sung Hoon Choi ◽  
Tae Sik Goh ◽  
Jung Sub Lee ◽  
...  

The aim of this study was to analyze the spinal stability and safety after posterior spinal fusion with various fixation segments and screw types in patients with an osteoporotic thoracolumbar burst fracture based on finite element analysis (FEA). To realize various osteoporotic vertebral fracture conditions on T12, seven cases of Young’s modulus, namely 0%, 1%, 5%, 10%, 25%, 50%, and 100% of the Young’s modulus, for vertebral bones under intact conditions were considered. Four types of fixation for thoracolumbar fracture on T12 (fixed with T11-L1, T10-T11-L1, T11-L1-L2, and T10-T11-L1-L2) were applied to the thoracolumbar fusion model. The following screw types were considered: pedicle screw (PS) and cortical screw (CS). Using FEA, four motions were performed on the fixed spine, and the stress applied to the screw, peri-implant bone (PIB), and intervertebral disc (IVD) and the range of motion (ROM) were calculated. The lowest ROM calculated corresponded to the T10-T11-L1-L2 model, while the closest to the intact situation was achieved in the T11-L1-L2 fixation model using PS. The lowest stress in the screw and PB was detected in the T10-T11-L1-L2 fixation model.


2013 ◽  
Vol 31 (9) ◽  
pp. 1447-1454 ◽  
Author(s):  
Mina Alizadeh ◽  
Mohammed Rafiq Abdul Kadir ◽  
Miskon Mohd Fadhli ◽  
Ali Fallahiarezoodar ◽  
Baharudin Azmi ◽  
...  

Author(s):  
Yuqiao Zheng ◽  
Fugang Dong ◽  
Huquan Guo ◽  
Bingxi Lu ◽  
Zhengwen He

The study obtains a methodology for the bionic design of the tower for wind turbines. To verify the rationality of the biological selection, the Analytic Hierarchy Procedure (AHP) is applied to calculate the similarity between the bamboo and the tower. Creatively, a bionic bamboo tower (BBT) is presented, which is equipped with four reinforcement ribs and five flanges. Further, finite element analysis is employed to comparatively investigate the performance of the BBT and the original tower (OT) in the static and dynamic. Through the investigation, it is suggested that the maximum deformation and maximum stress can be reduced by 5.93 and 13.75% of the BBT. Moreover, this approach results in 3% and 1.1% increase respectively in the First two natural frequencies and overall stability.


1980 ◽  
Vol 102 (4) ◽  
pp. 430-432 ◽  
Author(s):  
R. D. Blevins

The elastic thermal stresses in a welded transition between two pipes of the same size but different alloys are explored. A stress-free temperature is postulated and the stress due to a uniform change in temperature is characterized by the maximum stress intensity in the weld. A simple expression for predicting this maximum stress intensity is developed based on the results of finite element analysis.


Author(s):  
Syakirah Mohamed Amin ◽  
Muhammad Hanif Ramlee ◽  
Hadafi Fitri Mohd Latip ◽  
Gan Hong Seng ◽  
Mohammed Rafiq Abdul Kadir

Millions in the world suffering diabetes mellitus depends on insulin therapy to control their blood glucose level daily. However, the painful daily injections they need to take could lead to other complications if it is not done correctly. To date, it is suggested by many researchers and medical doctors that the needles should be inserted at any angles of 90º or 45º. Nevertheless, this recommendation has not been supported by clinical or biomechanical evaluation. Hence, this study evaluates the needle insertion for insulin therapy to find the favourable angles in order to reduce injury and pain onto the skin. Finite element analysis was done by  simulating the injection of three-dimensional (3D) needle model into a 3D skin model. The insertions were simulated at two different angles, which are 45ºand 90º with two different lengths of needles; 4 mm and 6 mm. This study concluded the favourable angle for 4 mm needle to be 90º while 6 mm needle was best to be inserted at 45º as these angles exerted the least maximum stress and strain onto the skin.


Sign in / Sign up

Export Citation Format

Share Document