scholarly journals Dynamic Path Optimization with Real-Time Information for Emergency Evacuation

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Huajun Zhang ◽  
Qin Zhao ◽  
Zihui Cheng ◽  
Linfan Liu ◽  
Yixin Su

In order to find the optimal path for emergency evacuation, this paper proposes a dynamic path optimization algorithm based on real-time information to search the optimal path and it takes fire accident as an example to introduce the algorithm principle. Before the accidents, it uses the Dijkstra algorithm to get the prior evacuation network which includes evacuation paths from each node to the exit port. When the accidents occur, the evacuees are unable to pass through the passage where the accident point and the blocking point are located, then the proposed method uses the breadth-first search strategy to solve the path optimization problem based on the prior evacuation network, and it dynamically updates the evacuation path according to the real-time information. Because the prior evacuation network includes global optimal evacuation paths from each node to the exit port, the breadth-first search algorithm only searches local optimal paths to avoid the blockage node or dangerous area. Because the online optimization solves a local pathfinding problem and the entire topology optimization is an offline calculation, the proposed method can find the optimal path in a short time when the accident situation changes. The simulation tests the performances of the proposed algorithm with different situations based on the topology of a building, and the results show that the proposed algorithm is effective to get the optimal path in a short time when it faces changes caused by the factors such as evacuee size, people distribution, blockage location, and accident points.

2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Zhi-qiang Liu ◽  
Teng Zhang ◽  
Yi-fan Wang

A local dynamic path planning method is proposed to compensate for the lack of consideration of the movement state of surrounding vehicles, the poor comfort, and the low traffic efficiency when the existing vehicle changes lanes automatically. Firstly, the cubic polynomial is predefined, and the optimal track path is solved. According to the real-time information of environment perception, the model is continuously modified by acquiring real-time information in the course of path planning, and the regional safety of the vehicle is realized. The Carsim and simulink simulation results and actual vehicle verification show that, compared with the traditional nondynamic research method, this method can effectively solve the problem that the vehicle speed variation and the sudden intrusions of the vehicle leading to the compulsory operation of the vehicle during the course of lane-changing. The safety is also improved. In order to ensure the vehicle comfort and stability, the lane-changing time is shortened by 20%, and the efficiency of lane-changing is improved obviously.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Zhengfeng Huang

Traffic demand in emergency evacuation is usually too large to be effectively managed with reactive traffic information control methods. These methods adapt to the road traffic passively by publishing real-time information without consideration of the routing behavior feedback produced by evacuees. Other remedy measures have to be prepared in case of nonrecurring congestion under these methods. To use the network capacity fully to mitigate near-future evacuation traffic congestion, we propose proactive traffic information control (PTIC) model. Based on the mechanism between information and routing behavior feedback, this model can change the route choice of evacuees in advance by dissipating strategic traffic information. Generally, the near-future traffic condition is difficult to accurately predict because it is uncertain in evacuation. Assume that the value of traffic information obeys certain distribution within a range, and then real-time traffic information may reflect the most-likely near-future traffic condition. Unlike the real-time information, the proactive traffic information is a selection within the range to achieve a desired level of the road network performance index (total system travel time). In the aspect of the solution algorithm, differential equilibrium decomposed optimization (D-EDO) is proposed to compare with other heuristic methods. A field study on a road network around a large stadium is used to validate the PTIC.


1984 ◽  
Vol 16 (8-9) ◽  
pp. 349-362 ◽  
Author(s):  
John L Vogel

Continued growth of urban regions and more stringent water quality regulations have resulted in an increased need for more real-time information about past, present, and future patterns and intensities of precipitation. Detailed, real-time information about precipitation can be obtained using radar and raingages for monitoring and prediction of precipitation amounts. The philosophy and the requirements for the development of real-time radar prediction-monitoring systems are described for climatic region similar to the Midwest of the united States. General data analysis and interpretation techniques associated with rainfall from convective storm systems are presented.


Sign in / Sign up

Export Citation Format

Share Document