On the Reformulated Multiplicative First Zagreb Index of Trees and Unicyclic Graphs
The multiplicative first Zagreb index of a graph H is defined as the product of the squares of the degrees of vertices of H . The line graph of a graph H is denoted by L H and is defined as the graph whose vertex set is the edge set of H where two vertices of L H are adjacent if and only if they are adjacent in H . The multiplicative first Zagreb index of the line graph of a graph H is referred to as the reformulated multiplicative first Zagreb index of H . This paper gives characterization of the unique graph attaining the minimum or maximum value of the reformulated multiplicative first Zagreb index in the class of all (i) trees of a fixed order (ii) connected unicyclic graphs of a fixed order.