scholarly journals Lump and Interaction Solutions to the ( 3 + 1 )-Dimensional Variable-Coefficient Nonlinear Wave Equation with Multidimensional Binary Bell Polynomials

2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Xuejun Zhou ◽  
Onur Alp Ilhan ◽  
Fangyuan Zhou ◽  
Sutarto Sutarto ◽  
Jalil Manafian ◽  
...  

In this paper, we study the ( 3 + 1 )-dimensional variable-coefficient nonlinear wave equation which is taken in soliton theory and generated by utilizing the Hirota bilinear technique. We obtain some new exact analytical solutions, containing interaction between a lump-two kink solitons, interaction between two lumps, and interaction between two lumps-soliton, lump-periodic, and lump-three kink solutions for the generalized ( 3 + 1 )-dimensional nonlinear wave equation in liquid with gas bubbles by the Maple symbolic package. Making use of Hirota’s bilinear scheme, we obtain its general soliton solutions in terms of bilinear form equation to the considered model which can be obtained by multidimensional binary Bell polynomials. Furthermore, we analyze typical dynamics of the high-order soliton solutions to show the regularity of solutions and also illustrate their behavior graphically.

Author(s):  
Guanqi Tao ◽  
Jalil Manafian ◽  
Onur Alp İlhan ◽  
Syed Maqsood Zia ◽  
Latifa Agamalieva

In this paper, we check and scan the (3+1)-dimensional variable-coefficient nonlinear wave equation which is considered in soliton theory and generated by considering the Hirota bilinear operators. We retrieve some novel exact analytical solutions, including cross-kink soliton solutions, breather wave solutions, interaction between stripe and periodic, multi-wave solutions, periodic wave solutions and solitary wave solutions for the (3+1)-dimensional variable-coefficient nonlinear wave equation in liquid with gas bubbles by Maple symbolic computations. The required conditions of the analyticity and positivity of the solutions can be easily achieved by taking special choices of the involved parameters. The main ingredients for this scheme are to recover the Hirota bilinear forms and their generalized equivalences. Lastly, the graphical simulations of the exact solutions are depicted.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Wen-guang Cheng ◽  
Biao Li ◽  
Yong Chen

The bilinear form, bilinear Bäcklund transformation, and Lax pair of a (2 + 1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation are derived through Bell polynomials. The integrable constraint conditions on variable coefficients can be naturally obtained in the procedure of applying the Bell polynomials approach. Moreover, theN-soliton solutions of the equation are constructed with the help of the Hirota bilinear method. Finally, the infinite conservation laws of this equation are obtained by decoupling binary Bell polynomials. All conserved densities and fluxes are illustrated with explicit recursion formulae.


2017 ◽  
Vol 31 (03) ◽  
pp. 1750012 ◽  
Author(s):  
Ya-Le Wang ◽  
Yi-Tian Gao ◽  
Shu-Liang Jia ◽  
Zhong-Zhou Lan ◽  
Gao-Fu Deng ◽  
...  

Under investigation in this paper is a (2[Formula: see text]+[Formula: see text]1)-dimensional generalized variable-coefficient shallow water wave equation which can be reduced to several integrable equations, such as the Korteweg–de Vries (KdV) equation and the Calogero–Bogoyavlenskii–Schiff (CBS) equation. Bilinear forms, Bäcklund transformation, Lax pair and infinite conservation laws are derived based on the binary Bell polynomials. N-soliton solutions are constructed via the Hirota method. Propagation and interaction of the solitons are illustrated graphically: (i) variable coefficients affect the shape of the N-soliton interaction in the scaled space and time coordinates; (ii) positions of the solitons depend on the sign of wave numbers after each interaction; (iii) interaction of the solitons is elastic, i.e. the amplitude, velocity and shape of each soliton remain invariant after each interaction except for a phase shift.


2018 ◽  
Vol 32 (29) ◽  
pp. 1850359 ◽  
Author(s):  
Wenhao Liu ◽  
Yufeng Zhang

In this paper, the traveling wave method is employed to investigate the one-soliton solutions to two different types of bright solutions for the generalized (3[Formula: see text]+[Formula: see text]1)-dimensional nonlinear-wave equation, primarily. In the following parts, we derive the breathers and rational solutions by using the Hirota bilinear method and long-wave limit. More specifically, we discuss the lump solution and rogue wave solution, in which their trajectory will be changed by varying the corresponding coefficient or coordinate axis. On the one hand, the breathers express the form of periodic line waves in different planes, on the other hand, rogue waves are localized in time.


2021 ◽  
Author(s):  
Lingchao He ◽  
Jianwen Zhang ◽  
Zhonglong Zhao

Abstract In this paper, we consider a generalized (2+1)-dimensional nonlinear wave equation. Based on the bilinear, the N-soliton solutions are obtained. The resonance Y-type soliton and the interaction solutions between M-resonance Y-type solitons and P-resonance Y-type solitons are constructed by adding some new constraints to the parameters of the N-soliton solutions. The new type of two-opening resonance Y-type soliton solutions are presented by choosing some appropriate parameters in 3-soliton solutions. The hybrid solutions consisting of resonance Y-type solitons, breathers and lumps are investigated. The trajectories of the lump waves before and after the collision with the Y-type solitons are analyzed from the perspective of mathematical mechanism. Furthermore, the multi-dimensional Riemann-theta function is employed to investigate the quasi-periodic wave solutions. The one-periodic and two-periodic wave solutions are obtained. The asymptotic properties are systematically analyzed, which establish the relations between the quasi-periodic wave solutions and the soliton solutions. The results may be helpful to provide some effective information to analyze the dynamical behaviors of solitons, fluid mechanics, shallow water waves and optical solitons.


Sign in / Sign up

Export Citation Format

Share Document