scholarly journals Grid Impact Assessment of Centralized and Decentralized Photovoltaic-Based Distribution Generation: A Case Study of Power Distribution Network with High Renewable Energy Penetration

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Tamer Khatib ◽  
Lama Sabri

This paper presents a grid impact assessment of a 5 MWp photovoltaic-based distribution unit on a 33 kV/23 MVA power distribution network with high penetration of renewable energy generation. The adapted network has an average load demand of 23 MVA, with a 3 MWp centralized PV system, and a number of decentralized PV systems of a capacity of 2 MWp. A grid impact assessment is done to an additional 5 MWp of PV generation as a centralized system as well as a number of decentralized systems. Power flow analysis is conducted to the grid considering different generation loading scenarios in order to study grid performance including active and reactive power flow, voltage profiles, distribution power transformers loading, transmission lines ampacity levels, and active and reactive power losses. On the other hand, the distribution of the decentralized systems is done optimally considering power distribution transformer loading and available area using the geographical information system. Finally, an economic analysis is done for both cases. Results showed that grid performance is better considering decentralized PV systems, whereas the active power losses are reduced by 13.43% and the reactive power losses are reduced by 14.48%. Moreover, the voltage of buses improved as compared to the centralized system. However, the decentralized PV systems were found to affect the power quality negatively more than the centralized system. As for the economic analysis, the decentralized PV system option is found slightly less profitable than the centralized system, whereas the simple payback period is 9 and 7 years, respectively. However, decentralized PV systems are recommended considering the technical implications of the centralized PV system.

Author(s):  
Million Alemayehu Bedasso* ◽  
R. Srinu Naik

In order to eliminate active and reactive power losses in the power system, this paper proposes TOPSIS and DE algorithm for determining the best location and parameter settings for the Unified Power Flow Controller (UPFC). To mitigate power losses, the best UPFC allocation can be achieved by re-dispatching load flows in power systems. The cost of incorporating UPFC into the power system. As a consequence, the proposed objective feature in this paper was created to address this problem. The IEEE 14-bus and IEEE 30-bus systems were used as case studies in the MATLAB simulations. When compared to particle swarm optimization, the results show that DE is a simple to use, reliable, and efficient optimization technique than (PSO). The network's active and reactive power losses can be significantly reduced by putting UPFC in the optimum position determined by TOPSIS ranking method.


2015 ◽  
Vol 9 (1) ◽  
pp. 107-116 ◽  
Author(s):  
Yang Liu-Lin ◽  
Hang Nai-Shan

This paper researched steady power flow control with variable inequality constraints. Since the inverse function of power flow equation is hard to obtain, differentiation coherence algorithm was proposed for variable inequality which is tightly constrained. By this method, tightly constrained variable inequality for variables adjustment relationships was analyzed. The variable constrained sensitivity which reflects variable coherence was obtained to archive accurate extreme equation for function optimization. The hybrid power flow mode of node power with branch power was structured. It also structured the minimum variable model correction equation with convergence and robot being same as conventional power flow. In fundamental analysis, the effect of extreme point was verified by small deviation from constrained extreme equation, and the constrained sensitivity was made for active and reactive power. It pointed out possible deviation by using simplified non-constrained sensitivity to deal with the optimization problem of active and reactive power. The control solutions for power flow for optimal control have been discussed as well. The examples of power flow control and voltage management have shown that the algorithm is simple and concentrated and shows the effect of differential coherence method for extreme point analysis.


2015 ◽  
Vol 740 ◽  
pp. 438-441 ◽  
Author(s):  
Wei Zheng ◽  
Fang Yang ◽  
Zheng Dao Liu

The power flow calculation is study the steady-state operation of the power system as basic electrical calculations. It is given the power system network topology, device parameters and determines system health boundary conditions, draw a detailed operating status of the power system through numerical simulation methods, such as voltage amplitude and phase angle on the bus system the power distribution and the power loss. Flow calculation is the power system operation, planning and safety, reliability analysis, is fundamental to the system voltage regulation, network reconfiguration and reactive power optimization must call the function, so the trend has very important significance to calculate the power system.


2020 ◽  
Vol 17 (1) ◽  
pp. 161-174
Author(s):  
Michal Kolcun ◽  
◽  
Anna Gawlak ◽  
Miroslaw Kornatka ◽  
Zsolt Čonka ◽  
...  

2013 ◽  
Vol 16 (2) ◽  
pp. 43-53
Author(s):  
Chuong Trong Trinh ◽  
Anh Viet Truong ◽  
Tu Phan Vu

There are now a lot of distributed generation (DG) using asynchronous machines are connected to power distribution grid. These machines do not usually generate reactive power, even consume reactive power, so they generally affect the voltage stability of whole power grid, and can cause instability in itself it is no longer balanced by the torque to work. In this paper, we investigate the voltage stability problem of the asynchronous machine of wind turbines used in power distribution networks. From the static model of the asynchronous machine, this paper will apply the pragmatic criteria to analysis the voltage stability of the asynchronous machine based on the results of the power flow in power distribution network.


Sign in / Sign up

Export Citation Format

Share Document