scholarly journals Wind Power Prediction considering Ramping Events Based on Generative Adversarial Network

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qiyue Huang

In view of the growing depletion of traditional fossil fuels and their adverse impact on natural environment, wind energy has gained increasing popularity across the globe. Characterized by wide distribution, low cost, and well-rounded technology, it has achieved fast-growing installed capacity in recent years. However, wind power is volatile and random in nature and the power ramping events caused by extreme weather always threaten the safe, stable, and economic operation of the power grid. To address the problems of insufficient sample data and low prediction accuracy in existing ramping prediction methods, a new way of wind power prediction considering ramping events based on Generative Adversarial Network (GAN) is proposed. First of all, the ramping events get identified and separated from the database of historical wind power, and the feature set of historical ramping events is then extracted according to the waveform and meteorological factors. Taking the feature set which integrates similar feature with historical one as the input of GAN, the simulated ramping data are continuously produced through the adversarial training of the generator and discriminator, thus enriching the ramping database. After that, the expanded ramping database can be applied to predict the ramping power through the LSTM model. An experiment based on the wind power dataset in a certain area of northwest China further verifies the effectiveness and superiority of this method compared with traditional ones.

Author(s):  
Gao Yang ◽  
Shu Xinlei ◽  
Liu Baoliang ◽  
Sun Wenzhong ◽  
Zhao Mingjiang ◽  
...  

Author(s):  
Xinyi Li ◽  
Liqiong Chang ◽  
Fangfang Song ◽  
Ju Wang ◽  
Xiaojiang Chen ◽  
...  

This paper focuses on a fundamental question in Wi-Fi-based gesture recognition: "Can we use the knowledge learned from some users to perform gesture recognition for others?". This problem is also known as cross-target recognition. It arises in many practical deployments of Wi-Fi-based gesture recognition where it is prohibitively expensive to collect training data from every single user. We present CrossGR, a low-cost cross-target gesture recognition system. As a departure from existing approaches, CrossGR does not require prior knowledge (such as who is currently performing a gesture) of the target user. Instead, CrossGR employs a deep neural network to extract user-agnostic but gesture-related Wi-Fi signal characteristics to perform gesture recognition. To provide sufficient training data to build an effective deep learning model, CrossGR employs a generative adversarial network to automatically generate many synthetic training data from a small set of real-world examples collected from a small number of users. Such a strategy allows CrossGR to minimize the user involvement and the associated cost in collecting training examples for building an accurate gesture recognition system. We evaluate CrossGR by applying it to perform gesture recognition across 10 users and 15 gestures. Experimental results show that CrossGR achieves an accuracy of over 82.6% (up to 99.75%). We demonstrate that CrossGR delivers comparable recognition accuracy, but uses an order of magnitude less training samples collected from the end-users when compared to state-of-the-art recognition systems.


Sign in / Sign up

Export Citation Format

Share Document