scholarly journals Node Location Privacy Protection in Unattended Wireless Sensor Networks

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
ZhiGang Zhou ◽  
Yu Wang ◽  
PanPan Li ◽  
XinGong Chang ◽  
JiWei Luo

Node location protection is critical to the wireless sensor networks (WSN), especially for unattended environment. However, due to most of the static deployment and the limitations in energy, storage, and communication capabilities of the sensors, WSNs are vulnerable to various location (and derivative) attacks. In this work, we study the node location privacy protection issue from both aspects of attacks and defenses. First, we present a new two-phase location attack for two important types of nodes (including base station and source node). It can locate a base station node within few amounts of local wireless transmission monitoring and then reversely trace the location of the source node. Different from existing methods, the proposed attack determines the node location based on the transmission direction, which can break through existing defenses. Then, to defend against such attacks, we design a pseudospiral-based routing protocol for WSN. We analyze the performance of parameters such as routing probability, maximum detectable angle, hop count, and number of loops based on PU SBRF, MoRF, and PLAUDIT methods. The theory analysis and confrontation experiment of attack and defense show that the proposed scheme can protect the location privacy of the target node with moderate communication and computation overhead.

Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2074 ◽  
Author(s):  
Qiuhua Wang ◽  
Jiacheng Zhan ◽  
Xiaoqin Ouyang ◽  
Yizhi Ren

Wireless Sensor Networks (WSNs) have been widely deployed to monitor valuable objects. In these applications, the sensor node senses the existence of objects and transmitting data packets to the sink node (SN) in a multi hop fashion. The SN is a powerful node with high performance and is used to collect all the information sensed by the sensor nodes. Due to the open nature of the wireless medium, it is easy for an adversary to trace back along the routing path of the packets and get the location of the source node. Once adversaries have got the source node location, they can capture the monitored targets. Thus, it is important to protect the source node location privacy in WSNs. Many methods have been proposed to deal with this source location privacy protection problem, and most of them provide routing path diversity by using phantom node (PN) which is a fake source node used to entice the adversaries away from the actual source node. But in the existing schemes, the PN is determined by the source node via flooding, which not only consumes a lot of communication overhead, but also shortens the safety period of the source node. In view of the above problems, we propose two new grid-based source location privacy protection schemes in WSNs called grid-based single phantom node source location privacy protection scheme (SPS) and grid-based dual phantom node source location privacy protection scheme (DPS) in this paper. Different from the idea of determining the phantom node by the source node in the existing schemes, we propose to use powerful sink node to help the source node to determine the phantom node candidate set (PNCS), from which the source node randomly selects a phantom node acting as a fake source node. We evaluate our schemes through theoretical analysis and experiments. Experimental results show that compared with other schemes, our proposed schemes are more efficient and achieves higher security, as well as keeping lower total energy consumption. Our proposed schemes can protect the location privacy of the source node even in resource-constrained wireless network environments.


Sign in / Sign up

Export Citation Format

Share Document