source node
Recently Published Documents


TOTAL DOCUMENTS

143
(FIVE YEARS 60)

H-INDEX

9
(FIVE YEARS 4)

2022 ◽  
Vol 24 (1) ◽  
pp. 244-252
Author(s):  
Mrs.L. D. Sujithra Devi ◽  
◽  
Mrs. A. Praveena ◽  
Mrs. B. Reena ◽  
Mrs. G. Anandhi ◽  
...  

A Mobile Ad Hoc Network (MANETs) connects mobile nodes without any base station. These nodes in the network can change the topology dynamically and transfer the data among themselves. The nodes in the MANET are categorized based on the resource factors like memory, computation, and power levels. The dynamic change in route makes the connection of the destination node more complex. Sometimes, it results in link failure, and hence the primary route is failed, which means an alternative route is required to transmit the packets. It required multiple paths from the source node to destination node with a stable path connecting the source node. This issue makes MANET routing a crucial task. To address these problems, multipath routing in MANET is discussed in this paper. Multipath routing provides various paths for a single source node to a single destination node. It is more important to consider load balancing and fault tolerance when establishing the multipath routing mechanism. This paper describes the various type of challenges along with their respective multipath routing protocols in MANETs.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 472
Author(s):  
Abdullah Waqas ◽  
Nasir Saeed ◽  
Hasan Mahmood ◽  
Muhannad Almutiry

Fifth-generation and beyond networks target multiple distributed network application such as Internet of Things (IoT), connected robotics, and massive Machine Type Communication (mMTC). In the absence of a central management unit, the device need to search and establish a route towards the destination before initializing data transmission. In this paper, we proposes a destination search and routing method for distributed 5G and beyond networks. In the proposed method, the source node makes multiple attempts to search for a route towards the destination by expanding disk-like patterns originating from the source node. The source node increases the search area in each attempt, accommodating more nodes in the search process. As a result, the probability of finding the destination increases, which reduces energy consumption and time delay of routing. We propose three variants of routing for high, medium, and low-density network scenarios and analyze their performance for various network configurations. The results demonstrate that the performance of the proposed solution is better than previously proposed techniques in terms of time latency and reduced energy consumption, making it applicable for 5G and beyond networks.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7847
Author(s):  
Diyue Chen ◽  
Hongyan Cui ◽  
Roy E. Welsch

It is found that nodes in Delay Tolerant Networks (DTN) exhibit stable social attributes similar to those of people. In this paper, an adaptive routing algorithm based on Relation Tree (AR-RT) for DTN is proposed. Each node constructs its own Relation Tree based on the historical encounter frequency, and will adopt different forwarding strategies based on the Relation Tree in the forwarding phase, so as to achieve more targeted forwarding. To further improve the scalability of the algorithm, the source node dynamically controls the initial maximum number of message copies according to its own cache occupancy, which enables the node to make negative feedback to network environment changes. Simulation results show that the AR-RT algorithm proposed in this paper has significant advantages over existing routing algorithms in terms of average delay, average hop count, and message delivery rate.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Huifang Yu ◽  
Zhewei Qi ◽  
Danqing Liu ◽  
Ke Yang

Network coding can save the wireless network resources and improve the network throughput by combining the routing with coding. Traditional multisignature from certificateless cryptosystem is not suitable for the network coding environment. In this paper, we propose a certificateless multisignature scheme suitable for network coding (NC-CLMSS) by using the sequential multisignature and homomorphic hash function. NC-CLMSS is based on the CDH and ECDL problems, and its security is detailedly proved in the random oracle (RO) model. In NC-CLMSS, the source node generates a multisignature for the message, and the intermediate node linearly combines the receiving message. NC-CLMSS can resist the pollution and forgery attacks, and it has the fixed signature length and relatively high computation efficiency.


Mathematics ◽  
2021 ◽  
Vol 9 (18) ◽  
pp. 2308
Author(s):  
Adrian Marius Deaconu ◽  
Luciana Majercsik

The network expansion problem is a very important practical optimization problem when there is a need to increment the flow through an existing network of transportation, electricity, water, gas, etc. In this problem, the flow augmentation can be achieved either by increasing the capacities on the existing arcs, or by adding new arcs to the network. Both operations are coming with an expansion cost. In this paper, the problem of finding the minimum network expansion cost so that the modified network can transport a given amount of flow from the source node to the sink node is studied. A strongly polynomial algorithm is deduced to solve the problem.


2021 ◽  
Vol 17 (9) ◽  
pp. 155014772110412
Author(s):  
Sheng Zhang ◽  
Houzhong Liu ◽  
Caisen Chen ◽  
Zhaojun Shi ◽  
William Wei Song

In opportunistic mobile social networks, nodes are clustered according to their interests or hobbies and take part in different activities regularly. We delve into the temporal and spatial mobility characteristics of network nodes and put forward an activity-based message opportunistic forwarding algorithm. The main idea of the algorithm is that we choose different message forwarding methods according to the situation of nodes participating in activities. If the source node and the destination node are both attend in the same activities, we select the best relay node which has the biggest delivery probability. While the source node and the destination node are not in the same activities at the same time, we need to find the optimal path which owns highest indirect delivery probability, and messages will be transmitted through the optimal path. The simulation results show that the proposed routing algorithm can not only improve the successful delivery ratio of messages but also reduce the network delay and the network overhead obviously, in comparison with the classical opportunistic routing algorithms, such as community-aware message opportunistic transmission algorithm, community-based message transmission scheme algorithm, PRoPHET, Epidemic algorithm, and interest characteristic probability prediction algorithm.


2021 ◽  
Vol 17 (6) ◽  
pp. 155014772110248
Author(s):  
Lina Yuan ◽  
Huajun Chen ◽  
Jing Gong

This paper proposes a novel multi-path and multi-hop wireless powered sensor network in case of hardware impairment, constituting an energy node, one source node, single sink node, and a series of distributed relay sensor nodes, where the energy node transmits wireless energy to all terminals in the first stage, and the relay sensor nodes relay the information of the source node to the sink node in the second stage. There exists M available paths between the source node and sink node, one of which is chosen for serving source-sink communication. To enhance the minimum achievable data rate, we propose a multi-hop communication protocol based on time-division-multiple-access and an optimal throughput path algorithm. We formulate the time allocation optimization problem about energy and information transmission of the proposed multi-hop cooperation, and confirm through abundant simulation experiments that the proposed scheme can availably improve user unfairness and spectral efficiency, and thus enhance its throughput performance.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
ZhiGang Zhou ◽  
Yu Wang ◽  
PanPan Li ◽  
XinGong Chang ◽  
JiWei Luo

Node location protection is critical to the wireless sensor networks (WSN), especially for unattended environment. However, due to most of the static deployment and the limitations in energy, storage, and communication capabilities of the sensors, WSNs are vulnerable to various location (and derivative) attacks. In this work, we study the node location privacy protection issue from both aspects of attacks and defenses. First, we present a new two-phase location attack for two important types of nodes (including base station and source node). It can locate a base station node within few amounts of local wireless transmission monitoring and then reversely trace the location of the source node. Different from existing methods, the proposed attack determines the node location based on the transmission direction, which can break through existing defenses. Then, to defend against such attacks, we design a pseudospiral-based routing protocol for WSN. We analyze the performance of parameters such as routing probability, maximum detectable angle, hop count, and number of loops based on PU SBRF, MoRF, and PLAUDIT methods. The theory analysis and confrontation experiment of attack and defense show that the proposed scheme can protect the location privacy of the target node with moderate communication and computation overhead.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Naveed Jan ◽  
Sarmadullah Khan ◽  
Ali H. Al-Bayatti ◽  
Madini O. Alassafi ◽  
Ahmed S. Alfakeeh ◽  
...  

Source location privacy (SLP) is a serious issue in wireless sensor networks (WSN) since Eavesdroppers tries to determine the source location. Hunting Animals in Forest is considered as an example for SLP. Many conventional schemes have been proposed for SLP in WSN, namely, Random Walk Routing, and Fake Messages Transmission, which cause critical issues (less safety period, packet delivery latency, and high energy consumption). Furthermore, the security analysis is not properly investigated in any previous work. In this paper, we propose a new model called the circular chessboard-based secure source location privacy model (C2S2-LOOP) with the following tasks: key generation, network topology management (clustering), intercluster routing (travel plan), and data packets encryption. All sensor nodes are deployed in a circular chessboard (Circular Field) and the key generation ( P U K , S E K ) is invoked using elliptic curve cryptography (ECC) with Ant Lion Optimization algorithm, which mitigate the issues of conventional ECC. Then, the network topology is managed using clustering where residual energy of the nodes is used for Cluster Head (CH) selection. Intercluster routing is implemented using packet traversing using clockwise and anticlockwise directions, which are mainly concerned with establishing a secure route between the source to the destination node. To ensure data security, we present the Chaotic Artificial Neural Network (C-ANN) in which encryption is executed. Assume that CH near to the source node has a high trust value, then it traverses (clock-wise) real packets towards sink node and similarly in the left side region (anticlockwise), fake packets are transmitted. Network simulations (OMNeT++) are evaluated and compared with the previous approaches, and finally, our proposed scheme concludes that it maintains not only source node location privacy (large safety period) and also reduces energy consumption by more than 40% and latency by more than 35%.


Sign in / Sign up

Export Citation Format

Share Document