scholarly journals A Review of Model Order Reduction Methods for Large-Scale Structure Systems

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Kuan Lu ◽  
Kangyu Zhang ◽  
Haopeng Zhang ◽  
Xiaohui Gu ◽  
Yulin Jin ◽  
...  

The large-scale structure systems in engineering are complex, high dimensional, and variety of physical mechanism couplings; it will be difficult to analyze the dynamic behaviors of complex systems quickly and optimize system parameters. Model order reduction (MOR) is an efficient way to address those problems and widely applied in the engineering areas. This paper focuses on the model order reduction of high-dimensional complex systems and reviews basic theories, well-posedness, and limitations of common methods of the model order reduction using the following methods: center manifold, Lyapunov–Schmidt (L-S), Galerkin, modal synthesis, and proper orthogonal decomposition (POD) methods. The POD is a powerful and effective model order reduction method, which aims at obtaining the most important components of a high-dimensional complex system by using a few proper orthogonal modes, and it is widely studied and applied by a large number of researchers in the past few decades. In this paper, the POD method is introduced in detail and the main characteristics and the existing problems of this method are also discussed. POD is classified into two categories in terms of the sampling and the parameter robustness, and the research progresses in the recent years are presented to the domestic researchers for the study and application. Finally, the outlooks of model order reduction of high-dimensional complex systems are provided for future work.

2013 ◽  
Vol 745 ◽  
pp. 13-25 ◽  
Author(s):  
Alberto Corigliano ◽  
Martino Dossi ◽  
Stefano Mariani

An algorithm, which combines the use of Domain Decomposition and Model Order Reduction methods based on Proper Orthogonal Decomposition, is proposed. The algorithm allows for the efficient handling of electro-mechanical coupled problems in MEMS, with a strong reduction of computing time with respect to standard monolithic or staggered solution strategies. Examples of coupled electro-mechanical problems, concerning a vibrating beam subject to variable electrostatic forces, are presented and discussed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Andreas Binder ◽  
Onkar Jadhav ◽  
Volker Mehrmann

AbstractThis paper presents a model order reduction approach for large scale high dimensional parametric models arising in the analysis of financial risk. To understand the risks associated with a financial product, one has to perform several thousand computationally demanding simulations of the model which require efficient algorithms. We establish a model reduction approach based on a variant of the proper orthogonal decomposition method to generate small model approximations for the high dimensional parametric convection-diffusion-reaction partial differential equations. This approach requires to solve the full model at some selected parameter values to generate a reduced basis. We propose an adaptive greedy sampling technique based on surrogate modeling for the selection of the sample parameter set. The new technique is analyzed, implemented, and tested on industrial data of a floater with cap and floor under the Hull–White model. The results illustrate that the reduced model approach works well for short-rate models.


2019 ◽  
Vol 67 (8) ◽  
pp. 648-667 ◽  
Author(s):  
Jens Saak ◽  
Dirk Siebelts ◽  
Steffen W. R. Werner

Abstract In order to apply control theory in small autonomous vehicles, mathematical models with small numbers of states are required for using the limited computational power in embedded programming. In this paper, we consider an artificial fishtail as an example for a complex mechanical system with a second-order large-scale model, which is derived by using the finite element method. To meet the above limitations, the several hundreds of thousands of degrees of freedom need to be reduced to merely a handful of surrogate degrees of freedom. We seek to achieve this task by various second-order model order reduction methods. All methods are applied on the fishtail’s matrices and their results are evaluated and compared in the frequency domain as well as in the time domain.


Author(s):  
Vladimir Lantsov ◽  
A. Papulina

The new algorithm of solving harmonic balance equations which used in electronic CAD systems is presented. The new algorithm is based on implementation to harmonic balance equations the ideas of model order reduction methods. This algorithm allows significantly reduce the size of memory for storing of model equations and reduce of computational costs.


Sign in / Sign up

Export Citation Format

Share Document