scholarly journals Simulation Optimization for the Multihoist Scheduling Problem

2021 ◽  
Vol 2021 ◽  
pp. 1-22
Author(s):  
Ricardo Pérez-Rodríguez

Although the Multihoist Scheduling Problem (MHSP) can be detailed as a job-shop configuration, the MHSP has additional constraints. Such constraints increase the difficulty and complexity of the schedule. Operation conditions in chemical processes are certainly different from other types of processes. Therefore, in order to model the real-world environment on a chemical production process, a simulation model is built and it emulates the feasibility requirements of such a production system. The results of the model, i.e., the makespan and the workload of the most loaded tank, are necessary for providing insights about which schedule on the shop floor should be implemented. A new biobjective optimization method is proposed, and it uses the results mentioned above in order to build new scenarios for the MHSP and to solve the aforementioned conflicting objectives. Various numerical experiments are shown to illustrate the performance of this new experimental technique, i.e., the simulation optimization approach. Based on the results, the proposed scheme tackles the inconvenience of the metaheuristics, i.e., lack of diversity of the solutions and poor ability of exploitation. In addition, the optimization approach is able to identify the best solutions by a distance-based ranking model and the solutions located in the first Pareto-front layer contributes to improve the search process of the aforementioned scheme, against other algorithms used in the comparison.

2019 ◽  
Vol 18 (01) ◽  
pp. 35-56
Author(s):  
M. Habib Zahmani ◽  
B. Atmani

Identifying the best Dispatching Rule in order to minimize makespan in a Job Shop Scheduling Problem is a complex task, since no Dispatching Rule is better than all others in different scenarios, making the selection of a most effective rule which is time-consuming and costly. In this paper, a novel approach combining Data Mining, Simulation, and Dispatching Rules is proposed. The aim is to assign in real-time a set of Dispatching Rules to the machines on the shop floor while minimizing makespan. Experiments show that the suggested approach is effective and reduces the makespan within a range of 1–44%. Furthermore, this approach also reduces the required computation time by using Data Mining to determine and assign the best Dispatching Rules to machines.


2014 ◽  
Vol 77 (1-4) ◽  
pp. 751-761 ◽  
Author(s):  
A. Azadeh ◽  
B. Maleki-Shoja ◽  
M. Sheikhalishahi ◽  
A. Esmaili ◽  
A. Ziaeifar ◽  
...  

2019 ◽  
Vol 3 (3) ◽  
pp. p92
Author(s):  
Julian Scott Yeomans

While solving difficult stochastic engineering problems, it is often desirable to generate several quantifiably good options that provide contrasting perspectives. These alternatives should satisfy all of the stated system conditions, but be maximally different from each other in the requisite decision space. The process of creating maximally different solution sets has been referred to as modelling-to-generate-alternatives (MGA). Simulation-optimization has frequently been used to solve computationally difficult, stochastic problems. This paper applies an MGA method that can create sets of maximally different alternatives for any simulation-optimization approach that employs a population-based algorithm. This algorithmic approach is both computationally efficient and simultaneously produces the prescribed number of maximally different solution alternatives in a single computational run of the procedure. The efficacy of this stochastic MGA method is demonstrated on a waste management facility expansion case.


Sign in / Sign up

Export Citation Format

Share Document