flexible job shop scheduling
Recently Published Documents


TOTAL DOCUMENTS

882
(FIVE YEARS 299)

H-INDEX

59
(FIVE YEARS 9)

2021 ◽  
pp. 1-14
Author(s):  
Tianhua Jiang ◽  
Huiqi Zhu ◽  
Jiuchun Gu ◽  
Lu Liu ◽  
Haicao Song

This paper presents a discrete animal migration optimization (DAMO) to solve the dual-resource constrained energy-saving flexible job shop scheduling problem (DRCESFJSP), with the aim of minimizing the total energy consumption in the workshop. A job-resource-based two-vector encoding method is designed to represent the scheduling solution, and an energy-saving decoding approach is given based on the left-shift rule. To ensure the quality and diversity of initial scheduling solutions, a heuristic approach is employed for the resource assignment, and some dispatching rules are applied to acquire the operation permutation. In the proposed DAMO, based on the characteristics of the DRCESFJSP problem, the search operators of the basic AMO are discretized to adapt to the problem under study. An animal migration operator is presented based on six problem-based neighborhood structures, which dynamically changes the search scale of each animal according to its solution quality. An individual updating operator based on crossover operation is designed to obtain new individuals through the crossover operation between the current individual and the best individual or a random individual. To evaluate the performance of the proposed algorithm, the Taguchi design of experiment method is first applied to obtain the best combination of parameters. Numerical experiments are carried out based on 32 instances in the existing literature. Computational data and statistical comparisons indicate that both the left-shift decoding rule and population initialization strategy are effective in enhancing the quality of the scheduling solutions. It also demonstrate that the proposed DAMO has advantages against other compared algorithms in terms of the solving accuracy for solving the DRCESFJSP.


Machines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 344
Author(s):  
Mingliang Wu ◽  
Dongsheng Yang ◽  
Bowen Zhou ◽  
Zhile Yang ◽  
Tianyi Liu ◽  
...  

The flexible job shop scheduling problem has always been the focus of research in the manufacturing field. However, most of the previous studies focused more on efficiency and ignored energy consumption. Energy, especially non-renewable energy, is an essential factor affecting the sustainable development of a country. To this end, this paper designs a flexible job shop scheduling problem model with energy consideration more in line with the production field. Except for the processing stage, the energy consumption of the transport, set up, unload, and idle stage are also included in our model. The weight property of jobs is also considered in our model. The heavier the job, the more energy it consumes during the transport, set up, and unload stage. Meanwhile, this paper invents an adaptive population non-dominated sorting genetic algorithm III (APNSGA-III) that combines the dual control strategy with the non-dominated sorting genetic algorithm III (NSGA-III) to solve our flexible job shop scheduling problem model. Four flexible job shop scheduling problem instances are formulated to examine the performance of our algorithm. The results achieved by the APNSGA-III method are compared with five classic multi-objective optimization algorithms. The results show that our proposed algorithm is efficient and powerful when dealing with the multi-objective flexible job shop scheduling problem model that includes energy consumption.


2021 ◽  
Vol 22 (4) ◽  
Author(s):  
Amin Rezaeipanah ◽  
Fariba Sarhangnia ◽  
MohammadJavad Abdollahi

In today’s competitive business world, manufacturers need to accommodate customer demands with appropriate scheduling. This requires efficient manufacturing chain scheduling. One of the most important problems that has always been considered in the manufacturing and job-shop industries is offering various products according to the needs of customers in different periods of time, within the shortest possible time and with rock-bottom cost. Job-Shop Scheduling systems are one of the applications of group technology in industry, the purpose of which is to take advantage of the physical or operational similarities of products in various aspects of construction and design. In addition, these systems are identified as Cellular Manufacturing Systems (CMS). Today, applying CMS and the use of its benefits have been very important as a possible way to increase the speed of the organization’s response to rapid market changes. In this paper, a meta-heuristic method based on combining genetic and greedy algorithms has been used in order to optimize and evaluate the performance criteria of flexible job-shop scheduling problem. In order to improve the efficiency of the genetic algorithm, the initial population is generated in a greedy algorithm and several elitist operators are used to improve the solutions. The greedy algorithm which is used to improve the generation of the initial population prioritizes the cells and the job in each cell, and thus offers quality solutions. The proposed algorithm is tested over P-FJSP dataset and compared with the state-of-the-art techniques of this literature. To evaluate the performance of the diversity, spacing, quality and run-time criteria were used in a multi-objective function. The results of simulation indicate better performance of the proposed method compared to NRGA and NSGA-II methods.


Sign in / Sign up

Export Citation Format

Share Document