scholarly journals Motion-Compensated Frame Interpolation Using Cellular Automata-Based Motion Vector Smoothing

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Ran Li ◽  
Ying Yin ◽  
Fengyuan Sun ◽  
Yanling Li ◽  
Lei You

Motion-Compensated Frame Interpolation (MCFI) is one of the common temporal-domain tamper operations, and it is used to produce faked video frames for improving the visual qualities of video sequences. The instability of temporal symmetry results in many incorrect Motion Vectors (MVs) for Bidirectional Motion Estimation (BME) in MCFI. The existing Motion Vector Smoothing (MVS) works often oversmooth or revise correct MVs as wrong ones. To overcome this problem, we propose a Cellular Automata-based MVS (CA-MVS) algorithm to smooth the Motion Vector Field (MVF) output by BME. In our work, a cellular automaton is constructed to deduce MV outliers according to a defined local evolution rule. By performing CA-based evolution in a loop iteration, we gradually expose MV outliers and reduce incorrect MVs resulting from oversmoothing as many as possible. Experimental results show the proposed algorithm can improve the accuracy of BME and provide better objective and subjective interpolation qualities when compared with the traditional MVS algorithms.

2016 ◽  
Vol 1 (1) ◽  
pp. 72-78 ◽  
Author(s):  
Chuanxin Tang ◽  
Ronggang Wang ◽  
Zhu Li ◽  
Wenmin Wang ◽  
Wen Gao

Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 156 ◽  
Author(s):  
Ran Li ◽  
Wendan Ma ◽  
Yanling Li ◽  
Lei You

The improvement of resolution of digital video requires a continuous increase of computation invested into Frame Rate Up-Conversion (FRUC). In this paper, we combine the advantages of Edge-Preserved Filtering (EPF) and Bidirectional Motion Estimation (BME) in an attempt to reduce the computational complexity. The inaccuracy of BME results from the existing similar structures in the texture regions, which can be avoided by using EPF to remove the texture details of video frames. EPF filters out by the high-frequency components, so each video frame can be subsampled before BME, at the same time, with the least accuracy degradation. EPF also preserves the edges, which prevents the deformation of object in the process of subsampling. Besides, we use predictive search to reduce the redundant search points according to the local smoothness of Motion Vector Field (MVF) to speed up BME. The experimental results show that the proposed FRUC algorithm brings good objective and subjective qualities of the interpolated frames with a low computational complexity.


Sign in / Sign up

Export Citation Format

Share Document