scholarly journals On the Multiplicity of Solutions for the Discrete Boundary Problem Involving the Singular ϕ -Laplacian

2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Zihua Qiu

In this paper, we consider the multiplicity of solutions for a discrete boundary value problem involving the singular ϕ -Laplacian. In order to apply the critical point theory, we extend the domain of the singular operator to the whole real numbers. Instead, we consider an auxiliary problem associated with the original one. We show that, if the nonlinear term oscillates suitably at the origin, there exists a sequence of pairwise distinct nontrivial solutions with the norms tend to zero. By our strong maximum principle, we show that all these solutions are positive under some assumptions. Moreover, the solutions of the auxiliary problem are solutions of the original one if the solutions are appropriately small. Lastly, we give an example to illustrate our main results.


2020 ◽  
Vol 40 (5) ◽  
pp. 537-548
Author(s):  
Dahmane Bouafia ◽  
Toufik Moussaoui

In this paper we study the existence of nontrivial solutions for a boundary value problem on the half-line, where the nonlinear term is sublinear, by using Ekeland's variational principle and critical point theory.



2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Zhuomin Zhang ◽  
Zhan Zhou

In this paper, we consider the existence and multiplicity of solutions for a discrete Dirichlet boundary value problem involving the p , q -Laplacian. By using the critical point theory, we obtain the existence of infinitely many solutions under some suitable assumptions on the nonlinear term. Also, by our strong maximum principle, we can obtain the existence of infinitely many positive solutions.



2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Chunyan He ◽  
Yongzhi Liao ◽  
Yongkun Li

We investigate the existence and multiplicity of solutions to a boundary value problem for impulsive differential equations. By using critical point theory, some criteria are obtained to guarantee that the impulsive problem has at least one solution, at least two solutions, and infinitely many solutions. Some examples are given to illustrate the effectiveness of our results.



2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Abdelrachid El Amrouss ◽  
Omar Hammouti

PurposeThe purpose of this paper is the study of existence and multiplicity of solutions for a nonlinear discrete boundary value problems involving the p-laplacian.Design/methodology/approachThe approach is based on variational methods and critical point theory.FindingsTheorem 1.1. Theorem 1.2. Theorem 1.3. Theorem 1.4.Originality/valueThe paper is original and the authors think the results are new.



2014 ◽  
Vol 2014 ◽  
pp. 1-6
Author(s):  
Jiafa Xu ◽  
Zhongli Wei

We study the existence of nontrivial solutions for nth-order boundary value problem with impulsive effects. We utilize Leray-Schauder degree theory to establish our main results. Furthermore, our nonlinear term f is allowed to grow superlinearly and sublinearly.



Symmetry ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 1839 ◽  
Author(s):  
Yanshan Chen ◽  
Zhan Zhou

In this paper, based on critical point theory, we mainly focus on the multiplicity of nontrivial solutions for a nonlinear discrete Dirichlet boundary value problem involving the mean curvature operator. Without imposing the symmetry or oscillating behavior at infinity on the nonlinear term f, we respectively obtain the sufficient conditions for the existence of at least three non-trivial solutions and the existence of at least two non-trivial solutions under different assumptions on f. In addition, by using the maximum principle, we also deduce the existence of at least three positive solutions from our conclusion. As far as we know, our results are supplements to some well-known ones.



2019 ◽  
Vol 17 (1) ◽  
pp. 1055-1064 ◽  
Author(s):  
Jiaoxiu Ling ◽  
Zhan Zhou

Abstract In this paper, by using critical point theory, we obtain some sufficient conditions on the existence of infinitely many positive solutions of the discrete Dirichlet problem involving the mean curvature operator. We show that the suitable oscillating behavior of the nonlinear term near at the origin and at infinity will lead to the existence of a sequence of pairwise distinct nontrivial positive solutions. We also give two examples to illustrate our main results.



Sign in / Sign up

Export Citation Format

Share Document