scholarly journals Optimization Strategy of Task Offloading with Wireless and Computing Resource Management in Mobile Edge Computing

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xintao Wu ◽  
Jie Gan ◽  
Shiyong Chen ◽  
Xu Zhao ◽  
Yucheng Wu

Mobile edge computing (MEC) provides user equipment (UE) with computing capability through wireless networks to improve the quality of experience (QoE). The scenario with multiple base stations and multiple mobile users is modeled and analyzed. The optimization strategy of task offloading with wireless and computing resource management (TOWCRM) in mobile edge computing is considered. A resource allocation algorithm based on an improved graph coloring method is used to allocate wireless resource blocks (RBs). The optimal solution of computing resource is obtained by using KKT conditions. To improve the system utility, a semi-distributed TOWCRM strategy is proposed to obtain the task offloading decision. Theoretical simulations under different system parameters are executed, and the proposed semi-distributed TOWCRM strategy can be completed with finite iterations. Simulation results have verified the effectiveness of the proposed algorithm.

2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Wenchen Zhou ◽  
Weiwei Fang ◽  
Yangyang Li ◽  
Bo Yuan ◽  
Yiming Li ◽  
...  

Mobile edge computing (MEC) provides cloud-computing services for mobile devices to offload intensive computation tasks to the physically proximal MEC servers. In this paper, we consider a multiserver system where a single mobile device asks for computation offloading to multiple nearby servers. We formulate this offloading problem as the joint optimization of computation task assignment and CPU frequency scaling, in order to minimize a tradeoff between task execution time and mobile energy consumption. The resulting optimization problem is combinatorial in essence, and the optimal solution generally can only be obtained by exhaustive search with extremely high complexity. Leveraging the Markov approximation technique, we propose a light-weight algorithm that can provably converge to a bounded near-optimal solution. The simulation results show that the proposed algorithm is able to generate near-optimal solutions and outperform other benchmark algorithms.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Hong Wang

Aiming at the problem that traditional fixed base stations cannot provide good signal coverage due to geographical factors, which may reduce the efficiency of task offloading, a collaborate task offloading strategy using improved genetic algorithm in mobile edge computing (MEC) is proposed by introducing the unmanned aerial vehicle (UAV) cluster. First, for the scenario of the UAV cluster serving multiple ground terminals, a collaborative task offloading model is formulated to offload the tasks to UAVs or the base station selectively. Then, an objective function and related constraints are put forward to minimize the time delay and energy consumption by analysis of those in the communication and computing process in the system while considering many factors. Then, the improved genetic algorithm is introduced to solve the optimization problem, obtaining the optimal collaborative task offloading strategy. To verify the performance of the proposed method, simulations are conducted on MATLAB. Simulation results showed that the joint utilization of UAV and MEC improves the offloading efficiency of the proposed strategy. When the number of UAVs is 12, the total utility is up to 1.83 and the task completion time does not exceed 110 ms. In this case, the task can be reasonably offloaded to UAVs or accomplished locally.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2628
Author(s):  
Mengxing Huang ◽  
Qianhao Zhai ◽  
Yinjie Chen ◽  
Siling Feng ◽  
Feng Shu

Computation offloading is one of the most important problems in edge computing. Devices can transmit computation tasks to servers to be executed through computation offloading. However, not all the computation tasks can be offloaded to servers with the limitation of network conditions. Therefore, it is very important to decide quickly how many tasks should be executed on servers and how many should be executed locally. Only computation tasks that are properly offloaded can improve the Quality of Service (QoS). Some existing methods only focus on a single objection, and of the others some have high computational complexity. There still have no method that could balance the targets and complexity for universal application. In this study, a Multi-Objective Whale Optimization Algorithm (MOWOA) based on time and energy consumption is proposed to solve the optimal offloading mechanism of computation offloading in mobile edge computing. It is the first time that MOWOA has been applied in this area. For improving the quality of the solution set, crowding degrees are introduced and all solutions are sorted by crowding degrees. Additionally, an improved MOWOA (MOWOA2) by using the gravity reference point method is proposed to obtain better diversity of the solution set. Compared with some typical approaches, such as the Grid-Based Evolutionary Algorithm (GrEA), Cluster-Gradient-based Artificial Immune System Algorithm (CGbAIS), Non-dominated Sorting Genetic Algorithm III (NSGA-III), etc., the MOWOA2 performs better in terms of the quality of the final solutions.


Sign in / Sign up

Export Citation Format

Share Document