scholarly journals Weighted Direct Position Determination via the Dimension Reduction Method for Noncircular Signals

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xinlei Shi ◽  
Xiaofei Zhang

This work studies the direct position determination (DPD) of noncircular (NC) signals with multiple arrays. Existing DPD algorithms of NC sources ignore the impact of path propagation loss on the performance of the algorithms. In practice, the signal-to-noise ratios (SNRs) of different observation stations are often different and unstable when the NC signal of the same radiation target strikes different observation locations. Besides, NC features of the target signals are applied not only to extend the virtual array manifold but also to bring high-dimensional search. For the sake of addressing the above problems, this study develops a DPD method of NC sources for multiple arrays combing weighted subspace data fusion (SDF) and dimension reduction (RD) search. First, NC features of the target signals are applied to extend the virtual array manifold. Second, we assign a weight to balance the error and obtain higher location accuracy with better robustness. Then, the RD method is used to eliminate the high computational complexity caused by the NC phase search dimension. Finally, the weighted fusion cost function is constructed by using the eigenvalues of the received signal covariance matrixes. It is verified by simulation that the proposed algorithm can effectively improve the location performance, get better robustness, and distinguish more targets compared with two-step location technology and SDF technology. In addition, without losing the estimation performance, the proposed algorithm can significantly reduce the complexity caused by the NC phase search dimension.

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Yi Zhao ◽  
Satish V. Ukkusuri ◽  
Jian Lu

This study develops a multidimensional scaling- (MDS-) based data dimension reduction method. The method is applied to short-term traffic flow prediction in urban road networks. The data dimension reduction method can be divided into three steps. The first is data selection based on qualitative analysis, the second is data grouping using the MDS method, and the last is data dimension reduction based on a correlation coefficient. Backpropagation neural network (BPNN) and multiple linear regression (MLR) models are employed in four kinds of urban traffic environments to test whether the proposed method improves the prediction accuracy of traffic flow. The results show that prediction models using traffic data after dimension reduction outperform the same prediction models using other datasets. The proposed method provides an alternative to existing models for urban traffic prediction.


2010 ◽  
Vol 60 (11) ◽  
pp. 1100-1114 ◽  
Author(s):  
Gerard L.G. Sleijpen ◽  
Peter Sonneveld ◽  
Martin B. van Gijzen

2014 ◽  
Vol 34 (2) ◽  
pp. 0233001 ◽  
Author(s):  
何颂华 He Songhua ◽  
刘真 Liu Zhen ◽  
陈桥 Chen Qiao

Sign in / Sign up

Export Citation Format

Share Document