scholarly journals Double Auction-Based Two-Level Resource Allocation Mechanism for Computation Offloading in Mobile Blockchain Application

2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Li Li ◽  
Yue Li ◽  
Ruotong Li

It is increasingly popular that platforms integrate various services into mobile applications due to the high usage and convenience of mobile devices, many of which demand high computational capacities and energy, such as cryptocurrency services based on blockchain. However, it is hard for mobile devices to run these services due to the limited storage and computational capacity. In this paper, the problem of computation offloading that requires sufficient computing resources with high utilization in large-scale users and multiprovider MEC system was investigated. A mechanism based on the combinatorial double auction, G-TRAP, is proposed in this paper to solve the above problem. In the mechanism, resources are provided both in the cloud and at the edge of the network. Mobile users compete for these resources to offload computing tasks by the rule that the edge-level resources will be allocated at first while cloud-level resources could be the supplement for the edge level. Given that the proof-of-work (PoW), the core issue of blockchain application, is resource-expensive to implement in mobile devices, we provide resource allocation service to users of blockchain application as experimental subjects. Simulation results show that the proposed mechanism for serving large-scale users in a short execution time outperforms two existing algorithms in terms of social utility and resource utilization. Consequently, our proposed system can effectively solve the intensive computation offloading problem of mobile blockchain applications.

2020 ◽  
Vol 2020 ◽  
pp. 1-12 ◽  
Author(s):  
Zhenquan Qin ◽  
Xueyan Qiu ◽  
Jin Ye ◽  
Lei Wang

The foundation of urban computing and smart technology is edge computing. Edge computing provides a new solution for large-scale computing and saves more energy while bringing a small amount of latency compared to local computing on mobile devices. To investigate the relationship between the cost of computing tasks and the consumption of time and energy, we propose a computation offloading scheme that achieves lower execution costs by cooperatively allocating computing resources by mobile devices and the edge server. For the mixed-integer nonlinear optimization problem of computing resource allocation and offloading strategy, we segment the problem and propose an iterative optimization algorithm to find the approximate optimal solution. The numerical results of the simulation experiment show that the algorithm can obtain a lower total cost than the baseline algorithm in most cases.


2013 ◽  
Vol 22 (3) ◽  
pp. 437-461 ◽  
Author(s):  
Chathurika Ranaweera ◽  
Elaine Wong ◽  
Christina Lim ◽  
Ampalavanapillai Nirmalathas ◽  
Chamil Jayasundara

2012 ◽  
Vol 9 (3) ◽  
pp. 1287-1305 ◽  
Author(s):  
Carlos Pascal ◽  
Doru Panescu

One of the key design issues for distributed systems is to find proper planning and coordination mechanisms when knowledge and decision capabilities are spread along the system. This contribution refers holonic manufacturing execution systems and highlights the way a proper modeling method - Petri nets - makes evident certain problems that can appear when agents have to simultaneously treat more goals. According to holonic organization the planning phase is mainly dependent on finding an appropriate resource allocation mechanism. The type of weakness is established by means of the proposed Petri net models and further proved by simulation experiments. A solution to make the holonic scheme avoid a failure in resource allocation is mentioned, too.


Sign in / Sign up

Export Citation Format

Share Document