scholarly journals Sizing a Hybrid Renewable Energy System by a Coevolutionary Multiobjective Optimization Algorithm

Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Wenhua Li ◽  
Guo Zhang ◽  
Xu Yang ◽  
Zhang Tao ◽  
Hu Xu

Hybrid renewable energy system (HRES) arises regularly in real life. By optimizing the capacity and running status of the microgrid (MG), HRES can decrease the running cost and improve the efficiency. Such an optimization problem is generally a constrained mixed-integer programming problem, which is usually solved by linear programming method. However, as more and more devices are added into MG, the mathematical model of HRES refers to nonlinear, in which the traditional method is incapable to solve. To address this issue, we first proposed the mathematical model of an HRES. Then, a coevolutionary multiobjective optimization algorithm, termed CMOEA-c, is proposed to handle the nonlinear part and the constraints. By considering the constraints and the objective values simultaneously, CMOEA-c can easily jump out of the local optimal solution and obtain satisfactory results. Experimental results show that, compared to other state-of-the-art methods, the proposed algorithm is competitive in solving HRES problems.

2020 ◽  
Vol 10 (12) ◽  
pp. 4061 ◽  
Author(s):  
Naoto Takatsu ◽  
Hooman Farzaneh

After the Great East Japan Earthquake, energy security and vulnerability have become critical issues facing the Japanese energy system. The integration of renewable energy sources to meet specific regional energy demand is a promising scenario to overcome these challenges. To this aim, this paper proposes a novel hydrogen-based hybrid renewable energy system (HRES), in which hydrogen fuel can be produced using both the methods of solar electrolysis and supercritical water gasification (SCWG) of biomass feedstock. The produced hydrogen is considered to function as an energy storage medium by storing renewable energy until the fuel cell converts it to electricity. The proposed HRES is used to meet the electricity demand load requirements for a typical household in a selected residential area located in Shinchi-machi in Fukuoka prefecture, Japan. The techno-economic assessment of deploying the proposed systems was conducted, using an integrated simulation-optimization modeling framework, considering two scenarios: (1) minimization of the total cost of the system in an off-grid mode and (2) maximization of the total profit obtained from using renewable electricity and selling surplus solar electricity to the grid, considering the feed-in-tariff (FiT) scheme in a grid-tied mode. As indicated by the model results, the proposed HRES can generate about 47.3 MWh of electricity in all scenarios, which is needed to meet the external load requirement in the selected study area. The levelized cost of energy (LCOE) of the system in scenarios 1 and 2 was estimated at 55.92 JPY/kWh and 56.47 JPY/kWh, respectively.


Sign in / Sign up

Export Citation Format

Share Document