scholarly journals Development of singularities in solutions of a hyperbolic system

Author(s):  
S. A. Messaoudi

We consider a special type of a hyperbolic system and show that classical solutions blow up in finite time even for small initial data.

2020 ◽  
Vol 26 ◽  
pp. 121
Author(s):  
Dongbing Zha ◽  
Weimin Peng

For the Cauchy problem of nonlinear elastic wave equations for 3D isotropic, homogeneous and hyperelastic materials with null conditions, global existence of classical solutions with small initial data was proved in R. Agemi (Invent. Math. 142 (2000) 225–250) and T. C. Sideris (Ann. Math. 151 (2000) 849–874) independently. In this paper, we will give some remarks and an alternative proof for it. First, we give the explicit variational structure of nonlinear elastic waves. Thus we can identify whether materials satisfy the null condition by checking the stored energy function directly. Furthermore, by some careful analyses on the nonlinear structure, we show that the Helmholtz projection, which is usually considered to be ill-suited for nonlinear analysis, can be in fact used to show the global existence result. We also improve the amount of Sobolev regularity of initial data, which seems optimal in the framework of classical solutions.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Mengmeng Liu ◽  
Xueyun Lin

AbstractIn this paper, we show the global existence of classical solutions to the incompressible elastodynamics equations with a damping mechanism on the stress tensor in dimension three for sufficiently small initial data on periodic boxes, that is, with periodic boundary conditions. The approach is based on a time-weighted energy estimate, under the assumptions that the initial deformation tensor is a small perturbation around an equilibrium state and the initial data have some symmetry.


2008 ◽  
Vol 06 (04) ◽  
pp. 413-428 ◽  
Author(s):  
HARVEY SEGUR

It is known that an "explosive instability" can occur when nonlinear waves propagate in certain media that admit 3-wave mixing. In that context, three resonantly interacting wavetrains all gain energy from a background source, and all blow up together, in finite time. A recent paper [17] showed that explosive instabilities can occur even in media that admit no 3-wave mixing. Instead, the instability is caused by 4-wave mixing, and results in four resonantly interacting wavetrains all blowing up in finite time. In both cases, the instability occurs in systems with no dissipation. This paper reviews the earlier work, and shows that adding a common form of dissipation to the system, with either 3-wave or 4-wave mixing, provides an effective threshold for blow-up. Only initial data that exceed the respective thresholds blow up in finite time.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Linrui Li ◽  
Shu Wang

In this paper, we study the finite-time singularity formation on the coupled Burgers–Constantin–Lax–Majda system with the nonlocal term, which is one nonlinear nonlocal system of combining Burgers equations with Constantin–Lax–Majda equations. We discuss whether the finite-time blow-up singularity mechanism of the system depends upon the domination between the CLM type’s vortex-stretching term and the Burgers type’s convection term in some sense. We give two kinds of different finite-time blow-up results and prove the local smooth solution of the nonlocal system blows up in finite time for two classes of large initial data.


2016 ◽  
Vol 26 (11) ◽  
pp. 2111-2128 ◽  
Author(s):  
Bingran Hu ◽  
Y. Tao

This work considers the chemotaxis-growth system [Formula: see text] in a smoothly bounded domain [Formula: see text], with zero-flux boundary conditions, where [Formula: see text] and [Formula: see text] are given positive parameters. In striking contrast to the corresponding three-dimensional two-component chemo-taxis-growth system to which the global existence or blow-up of classical solutions largely remains open when [Formula: see text] is small, it is shown that whenever [Formula: see text] [Formula: see text] and [Formula: see text], for any given non-negative and suitably smooth initial data [Formula: see text] satisfying [Formula: see text], the system (⋆) admits a unique global classical solution that is uniformly-in-time bounded, which rules out the possibility of blow-up of solutions in finite time or in infinite time. Moreover, under the fully explicit condition [Formula: see text] the solution [Formula: see text] exponentially converges to the constant stationary solution [Formula: see text] in the norm of [Formula: see text] as [Formula: see text].


2019 ◽  
Vol 149 (5) ◽  
pp. 1175-1188
Author(s):  
Léo Agélas

AbstractWe consider complex-valued solutions of the conserved Kuramoto–Sivashinsky equation which describes the coarsening of an unstable solid surface that conserves mass and that is parity symmetric. This equation arises in different aspects of surface growth. Up to now, the problem of existence and smoothness of global solutions of such equations remained open in ℝd and in the torus 𝕋d, d ⩾ 1. In this paper, we answer partially to this question. We prove the finite time blow-up of complex-valued solutions associated with a class of large initial data. More precisely, we show that there is complex-valued initial data that exists in every Besov space (and hence in every Lebesgue and Sobolev space), such that after a finite time, the complex-valued solution is in no Besov space (and hence in no Lebesgue or Sobolev space).


2015 ◽  
Vol 2015 ◽  
pp. 1-6
Author(s):  
Ka Luen Cheung ◽  
Sen Wong

We establish the stabilities and blowup results for the nonisentropic Euler-Poisson equations by the energy method. By analysing the second inertia, we show that the classical solutions of the system with attractive forces blow up in finite time in some special dimensions when the energy is negative. Moreover, we obtain the stabilities results for the system in the cases of attractive and repulsive forces.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Mingxuan Zhu ◽  
Liangbing Jin ◽  
Zaihong Jiang

We investigate the DGH equation. Analogous to the Camassa-Holm equation, this equation possesses the blow-up phenomenon. We establish a new blow up criterion on the initial data to guarantee the formulation of singularities in finite time.


2018 ◽  
Vol 15 (01) ◽  
pp. 15-35 ◽  
Author(s):  
Eduard Feireisl ◽  
Elisabetta Rocca ◽  
Giulio Schimperna ◽  
Arghir Zarnescu

We consider a model of liquid crystals, based on a nonlinear hyperbolic system of differential equations, that represents an inviscid version of the model proposed by Qian and Sheng. A new concept of dissipative solution is proposed, for which a global-in-time existence theorem is shown. The dissipative solutions enjoy the following properties: (i) they exist globally in time for any finite energy initial data; (ii) dissipative solutions enjoying certain smoothness are classical solutions; (iii) a dissipative solution coincides with a strong solution originating from the same initial data as long as the latter exists.


2014 ◽  
Vol 2014 ◽  
pp. 1-5
Author(s):  
Caochuan Ma ◽  
Wujun Lv

We investigate the Cauchy problem for the modified Novikov equation. We establish blow-up criteria on the initial data to guarantee the corresponding solution blowing up in finite time.


Sign in / Sign up

Export Citation Format

Share Document