variational structure
Recently Published Documents


TOTAL DOCUMENTS

107
(FIVE YEARS 28)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
Irene Benedetti ◽  
Tiziana Cardinali ◽  
Radu Precup

AbstractIn this paper, fixed point arguments and a critical point technique are combined leading to hybrid existence results for a system of two operator equations where only one of the equations has a variational structure. An application to periodic solutions of a semi-variational system is given to illustrate the theory.


2021 ◽  
pp. 1-66
Author(s):  
Akio Ito

This paper deals with a nonlinear system (S) composed of three PDEs and one ODE below: [Formula: see text] The system (S) was proposed as one of the mathematical models which describe tumor invasion phenomena with chemotaxis effects. The most important and interesting point is that the diffusion coefficient of tumor cells, denoted by [Formula: see text], is influenced by both nonlocal effect of a chemical attractive substance, denoted by [Formula: see text], and the local one of extracellular matrix, denoted by [Formula: see text]. From this point, the first PDE in (S) contains a nonlinear cross diffusion. Actually, this mathematical setting gives an inner product of a suitable real Hilbert space, which governs the dynamics of the density of tumor cells [Formula: see text], a quasi-variational structure. Hence, the first purpose in this paper is to make it clear what this real Hilbert space is. After this, we show the existence of strong time local solutions to the initial-boundary problems associated with (S) when the space dimension is [Formula: see text] by applying the general theory of evolution inclusions on real Hilbert spaces with quasi-variational structures. Moreover, for the case [Formula: see text] we succeed in constructing a strong time global solution.


2021 ◽  
Vol 2021 ◽  
pp. 1-4
Author(s):  
Gul I Hina Aslam ◽  
Amjad Ali ◽  
Maimona Rafiq

In this note, the variational form of the classical Lax–Milgram theorem is used for the divulgence of variational structure of the first-order noninstantaneous impulsive linear evolution equation. The existence and uniqueness of the weak solution of the problem is obtained. In future, this constructive theory can be used for the corresponding semilinear problems.


Author(s):  
Philip K. Kristensen ◽  
Christian F. Niordson ◽  
Emilio Martínez-Pañeda

The phase field paradigm, in combination with a suitable variational structure, has opened a path for using Griffith’s energy balance to predict the fracture of solids. These so-called phase field fracture methods have gained significant popularity over the past decade, and are now part of commercial finite element packages and engineering fitness- for-service assessments. Crack paths can be predicted, in arbitrary geometries and dimensions, based on a global energy minimization—without the need for ad hoc criteria. In this work, we review the fundamentals of phase field fracture methods and examine their capabilities in delivering predictions in agreement with the classical fracture mechanics theory pioneered by Griffith. The two most widely used phase field fracture models are implemented in the context of the finite element method, and several paradigmatic boundary value problems are addressed to gain insight into their predictive abilities across all cracking stages; both the initiation of growth and stable crack propagation are investigated. In addition, we examine the effectiveness of phase field models with an internal material length scale in capturing size effects and the transition flaw size concept. Our results show that phase field fracture methods satisfactorily approximate classical fracture mechanics predictions and can also reconcile stress and toughness criteria for fracture. The accuracy of the approximation is however dependent on modelling and constitutive choices; we provide a rationale for these differences and identify suitable approaches for delivering phase field fracture predictions that are in good agreement with well-established fracture mechanics paradigms. This article is part of a discussion meeting issue ‘A cracking approach to inventing new tough materials: fracture stranger than friction’.


Author(s):  
Patrick Knöbelreiter ◽  
Thomas Pock

AbstractIn this work, we propose a learning-based method to denoise and refine disparity maps. The proposed variational network arises naturally from unrolling the iterates of a proximal gradient method applied to a variational energy defined in a joint disparity, color, and confidence image space. Our method allows to learn a robust collaborative regularizer leveraging the joint statistics of the color image, the confidence map and the disparity map. Due to the variational structure of our method, the individual steps can be easily visualized, thus enabling interpretability of the method. We can therefore provide interesting insights into how our method refines and denoises disparity maps. To this end, we can visualize and interpret the learned filters and activation functions and prove the increased reliability of the predicted pixel-wise confidence maps. Furthermore, the optimization based structure of our refinement module allows us to compute eigen disparity maps, which reveal structural properties of our refinement module. The efficiency of our method is demonstrated on the publicly available stereo benchmarks Middlebury 2014 and Kitti 2015.


2021 ◽  
Vol 66 (2) ◽  
pp. 397-408
Author(s):  
Andrei Stan

"In this paper xed point arguments and a critical point technique are combined leading to hybrid existence results for a system of three operator equations where only two of the equations have a variational structure. The components of the solution which are associated to the equations having a variational form represent a Nash-type equilibrium of the corresponding energy functionals. The result is achieved by an iterative scheme based on Ekeland's variational principle."


Author(s):  
Oscar Agudelo ◽  
Joel Kübler ◽  
Tobias Weth

We study a new family of sign-changing solutions to the stationary nonlinear Schrödinger equation \[ -\Delta v +q v =|v|^{p-2} v, \qquad \text{in}\,{ {\mathbb{R}^{3}},} \] with $2 < p < \infty$ and $q \ge 0$ . These solutions are spiraling in the sense that they are not axially symmetric but invariant under screw motion, i.e., they share the symmetry properties of a helicoid. In addition to existence results, we provide information on the shape of spiraling solutions, which depends on the parameter value representing the rotational slope of the underlying screw motion. Our results complement a related analysis of Del Pino, Musso and Pacard in their study (2012, Manuscripta Math., 138, 273–286) for the Allen–Cahn equation, whereas the nature of results and the underlying variational structure are completely different.


Author(s):  
José A. Carrillo ◽  
Katy Craig ◽  
Li Wang ◽  
Chaozhen Wei

AbstractCombining the classical theory of optimal transport with modern operator splitting techniques, we develop a new numerical method for nonlinear, nonlocal partial differential equations, arising in models of porous media, materials science, and biological swarming. Our method proceeds as follows: first, we discretize in time, either via the classical JKO scheme or via a novel Crank–Nicolson-type method we introduce. Next, we use the Benamou–Brenier dynamical characterization of the Wasserstein distance to reduce computing the solution of the discrete time equations to solving fully discrete minimization problems, with strictly convex objective functions and linear constraints. Third, we compute the minimizers by applying a recently introduced, provably convergent primal dual splitting scheme for three operators (Yan in J Sci Comput 1–20, 2018). By leveraging the PDEs’ underlying variational structure, our method overcomes stability issues present in previous numerical work built on explicit time discretizations, which suffer due to the equations’ strong nonlinearities and degeneracies. Our method is also naturally positivity and mass preserving and, in the case of the JKO scheme, energy decreasing. We prove that minimizers of the fully discrete problem converge to minimizers of the spatially continuous, discrete time problem as the spatial discretization is refined. We conclude with simulations of nonlinear PDEs and Wasserstein geodesics in one and two dimensions that illustrate the key properties of our approach, including higher-order convergence our novel Crank–Nicolson-type method, when compared to the classical JKO method.


2021 ◽  
Vol 60 (6) ◽  
Author(s):  
Jaroslav Schmidt ◽  
Tomáš Janda ◽  
Alena Zemanová ◽  
Jan Zeman ◽  
Michal Šejnoha

This paper investigates a time-stepping procedure of the Newmark type for dynamic analyses of viscoelastic structures characterized by a generalized Maxwell model. We depart from a scheme developed for a three-parameter model by Hatada et al. [1], which we extend to a generic Maxwell chain and demonstrate that the resulting algorithm can be derived from a suitably discretized Hamilton variational principle. This variational structure manifests itself in an excellent stability and a low artificial damping of the integrator, as we confirm with a mass-spring-dashpot example. After a straightforward generalization to distributed systems, the integrator may find use in, e.g., fracture simulations of laminated glass units, once combined with variationally-based fracture models.


Sign in / Sign up

Export Citation Format

Share Document