scholarly journals Almost Surjective Epsilon-Isometry in The Reflexive Banach Spaces

CAUCHY ◽  
2017 ◽  
Vol 4 (4) ◽  
pp. 167
Author(s):  
Minanur Rohman

<p class="AbstractCxSpFirst">In this paper, we will discuss some applications of almost surjective epsilon-isometry mapping, one of them is in Lorentz space ( L_(p,q)-space). Furthermore, using some classical theorems of w star-topology and concept of closed subspace -complemented, for every almost surjective epsilon-isometry mapping  <em>f </em>: <em>X to</em><em> Y</em>, where <em>Y</em> is a reflexive Banach space, then there exists a bounded linear operator   <em>T</em> : <em>Y to</em><em> X</em>  with  such that</p><p class="AbstractCxSpMiddle">  </p><p class="AbstractCxSpLast">for every x in X.</p>

1985 ◽  
Vol 37 (5) ◽  
pp. 908-920
Author(s):  
A. D. Andrew

1. In this paper, we investigate the ranges of projections on certain Banach spaces of functions defined on a diadic tree. The notion of a “tree-like” Banach space is due to James 4], who used it to construct the separable space JT which has nonseparable dual and yet does not contain l1. This idea has proved useful. In [3], Hagler constructed a hereditarily c0 tree space, HT, and Schechtman [6] constructed, for each 1 ≦ p ≦ ∞, a reflexive Banach space, STp with a 1-unconditional basis which does not contain lp yet is uniformly isomorphic to for each n.In [1] we showed that if U is a bounded linear operator on JT, then there exists a subspace W ⊂ JT, isomorphic to JT such that either U or (1 — U) acts as an isomorphism on W and UW or (1 — U)W is complemented in JT. In this paper, we establish this result for the Hagler and Schechtman tree spaces.


1991 ◽  
Vol 14 (3) ◽  
pp. 611-614 ◽  
Author(s):  
James R. Holub

It is shown that ifXis a uniformly convex Banach space andSa bounded linear operator onXfor which‖I−S‖=1, thenSis invertible if and only if‖I−12S‖<1. From this it follows that ifSis invertible onXthen either (i)dist(I,[S])<1, or (ii)0is the unique best approximation toIfrom[S], a natural (partial) converse to the well-known sufficient condition for invertibility thatdist(I,[S])<1.


2014 ◽  
Vol 30 (1) ◽  
pp. 31-37
Author(s):  
H. A. ATIA ◽  
◽  

Our goal in this work is to study the separation problem for the Grushin differential operator formed by ... in the Banach space H1(R2), where the potential Q(x, y) ∈ L(1), is a bounded linear operator which transforms at 1 in value of (x, y).


2012 ◽  
Vol 2012 ◽  
pp. 1-7
Author(s):  
Danyal Soybaş

A Banach space is said to have (D) property if every bounded linear operator is weakly compact for every Banach space whose dual does not contain an isomorphic copy of . Studying this property in connection with other geometric properties, we show that every Banach space whose dual has (V∗) property of Pełczyński (and hence every Banach space with (V) property) has (D) property. We show that the space of real functions, which are integrable with respect to a measure with values in a Banach space , has (D) property. We give some other results concerning Banach spaces with (D) property.


2001 ◽  
Vol 64 (3) ◽  
pp. 675-689 ◽  
Author(s):  
H. M. WARK

It is shown that there exists a non-separable reflexive Banach space on which every bounded linear operator is the sum of a scalar multiple of the identity operator and an operator of separable range. There is a strong sense that such a Banach space has as few operators as its linear and topological properties allow.


1985 ◽  
Vol 26 (1) ◽  
pp. 35-46 ◽  
Author(s):  
Jon C. Snader

In 1959, Bishop [4] published a seminal paper in which he studied various types of spectral decompositions or “duality theories” that an arbitrary bounded linear operator on a reflexive Banach space might have. In the course of his investigations, he isolated the following analytic property which he called condition (β).


Author(s):  
Paulette Saab

Given a compact Hausdorff space X, E and F two Banach spaces, let T: C(X, E) → F denote a bounded linear operator (here C(X, E) stands for the Banach space of all continuous E-valued functions defined on X under supremum norm). It is well known [4] that any such operator T has a finitely additive representing measure G that is defined on the σ–field of Borel subsets of X and that G takes its values in the space of all bounded linear operators from E into the second dual of F. The representing measure G enjoys a host of many important properties; we refer the reader to [4] and [5] for more on these properties. The question of whether properties of the operator T can be characterized in terms of properties of the representing measure has been considered by many authors, see for instance [1], [2], [3] and [6]. Most characterizations presented (see [3] concerning weakly compact operators or [3] and [6] concerning unconditionally converging operators) were given under additional assumptions on the Banach space E. The aim of this paper is to show that one cannot drop the assumptions on E, indeed as we shall soon show many of the operator characterizations characterize the Banach space E itself. More specifically, it is known [3] that if E* and E** have the Radon-Nikodym property then a bounded linear operator T: C(X, E) → F is weakly compact if and only if the measure G is continuous at Ø (also called strongly bounded), i.e. limn ||G|| (Bn) = 0 for every decreasing sequence Bn ↘ Ø of Borel subsets of X (here ||G|| (B) denotes the semivariation of G at B), and if for every Borel set B the operator G(B) is a weakly compact operator from E to F. In this paper we shall show that if one wants to characterize weakly compact operators as those operators with the above mentioned properties then E* and E** must both have the Radon-Nikodym property. This will constitute the first part of this paper and answers in the negative a question of [2]. In the second part we consider unconditionally converging operators on C(X, E). It is known [6] that if T: C(X, E) → F is an unconditionally converging operator, then its representing measure G is continuous at 0 and, for every Borel set B, G(B) is an unconditionally converging operator from E to F. The converse of the above result was shown to be untrue by a nice example (see [2]). Here again we show that if one wants to characterize unconditionally converging operators as above, then the Banach space E cannot contain a copy of c0. Finally, in the last section we characterize Banach spaces E with the Schur property in terms of properties of Dunford-Pettis operators on C(X, E) spaces.


1996 ◽  
Vol 38 (2) ◽  
pp. 243-248 ◽  
Author(s):  
Denny H. Leung

A Banach space E is said to be regular if every bounded linear operator from E into E′ is weakly compact. This property was studied in [7, 9] under the name Property (w). In [7], using James type spaces as constructed in [4], examples were given of regular Banach spaces which fail to have weakly sequentially complete duals, answering a question raised in [9]. In this paper, we present some more results concerning the regularity of James type spaces.


1979 ◽  
Vol 20 (2) ◽  
pp. 163-168 ◽  
Author(s):  
Che-Kao Fong

A (bounded, linear) operator H on a Banach space is said to be hermitian if ∥exp(itH)∥ = 1 for all real t. An operator N on is said to be normal if N = H + iK, where H and K are commuting hermitian operators. These definitions generalize those familiar concepts of operators on Hilbert spaces. Also, the normal derivations defined in [1] are normal operators. For more details about hermitian operators and normal operators on general Banach spaces, see [4]. The main result concerning normal operators in the present paper is the following theorem.


2004 ◽  
Vol 47 (3) ◽  
pp. 679-694 ◽  
Author(s):  
Eve Oja

AbstractLet $X$ be a Banach space and let $Y$ be a closed subspace of a Banach space $Z$. The following theorem is proved. Assume that $X^*$ or $Z^*$ has the approximation property. If there exists a bounded linear extension operator from $Y^*$ to $Z^*$, then any bounded linear operator $T:X\rightarrow Y$ is nuclear whenever $T$ is nuclear from $X$ to $Z$. The particular case of the theorem with $Z=Y^{**}$ is due to Grothendieck and Oja and Reinov. Numerous applications are presented. For instance, it is shown that a bounded linear operator $T$ from an arbitrary Banach space $X$ to an $\mathcal{L}_\infty$-space $Y$ is nuclear whenever $T$ is nuclear from $X$ to some Banach space $Z$ containing $Y$ as a subspace.AMS 2000 Mathematics subject classification: Primary 46B20; 46B28; 47B10


Sign in / Sign up

Export Citation Format

Share Document