scholarly journals On the sublinear operators factoring throughLq

2004 ◽  
Vol 2004 (50) ◽  
pp. 2695-2704
Author(s):  
Lahcène Mezrag ◽  
Abdelmoumene Tiaiba

Let0<p≤q≤+∞. LetTbe a bounded sublinear operator from a Banach spaceXinto anLp(Ω,μ)and let∇Tbe the set of all linear operators≤T. In the present paper, we will show the following. LetCbe a positive constant. For alluin∇T,Cpq(u)≤C(i.e.,uadmits a factorization of the formX→u˜Lq(Ω,μ)→MguLq(Ω,μ), whereu˜is a bounded linear operator with‖u˜‖≤C,Mguis the bounded operator of multiplication byguwhich is inBLr+(Ω,μ)(1/p=1/q+1/r),u=Mgu∘u˜andCpq(u)is the constant ofq-convexity ofu) if and only ifTadmits the same factorization; This is under the supposition that{gu}u∈∇Tis latticially bounded. Without this condition this equivalence is not true in general.

2007 ◽  
Vol 49 (1) ◽  
pp. 145-154
Author(s):  
BRUCE A. BARNES

Abstract.LetTbe a bounded linear operator on a Banach spaceW, assumeWandYare in normed duality, and assume thatThas adjointT†relative toY. In this paper, conditions are given that imply that for all λ≠0, λ−Tand λ −T†maintain important standard operator relationships. For example, under the conditions given, λ −Thas closed range if, and only if, λ −T†has closed range.These general results are shown to apply to certain classes of integral operators acting on spaces of continuous functions.


1969 ◽  
Vol 21 ◽  
pp. 592-594 ◽  
Author(s):  
A. F. Ruston

1. In a recent paper (1) on meromorphic operators, Caradus introduced the class of bounded linear operators on a complex Banach space X. A bounded linear operator T is put in the class if and only if its spectrum consists of a finite number of poles of the resolvent of T. Equivalently, T is in if and only if it has a rational resolvent (8, p. 314).Some ten years ago (in May, 1957), I discovered a property of the class g which may be of interest in connection with Caradus' work, and is the subject of the present note.2. THEOREM. Let X be a complex Banach space. If T belongs to the class, and the linear operator S commutes with every bounded linear operator which commutes with T, then there is a polynomial p such that S = p(T).


1973 ◽  
Vol 16 (3) ◽  
pp. 286-289 ◽  
Author(s):  
Anthony F. Ruston

It is known (see, for instance, [1] p. 64, [6] p. 264) that, if A and B are bounded linear operators on a Banach space into itself (or, more generally, if A is a bounded linear operator on into a Banach space and B is a bounded linear operator on into), then AB and BA have the same spectrum except (possibly) for zero. In the present note, it is shown that AB is asymptotically quasi-compact if and only if BA is asymptotically quasi-compact, and that then any Fredholm determinant for AB is a Fredholm determinant for BA and vice versa.


1970 ◽  
Vol 13 (4) ◽  
pp. 469-473
Author(s):  
C-S Lin

Let T—c be a Fredholm operator, where T is a bounded linear operator on a complex Banach space and c is a scalar, the set of all such scalars is called the Φ-set of T [2] and was studied by many authors. In this connection, the purpose of the present paper is to investigate some classes Φ(V) of all such operators for any subset V of the complex plane.Let X be a Banach space over the field C of complex numbers with dim Z = ∞, unless otherwise stated, B(X) the Banach algebra of all bounded linear operators and K(X) the closed two-sided ideal of all compact operators on X.


1974 ◽  
Vol 15 (2) ◽  
pp. 93-94
Author(s):  
Anthony F. Ruston

We recall (cf. [2] Definitions 3.1 and 3.2, p. 322) that a bounded linear operator T on a Banach space ℵ into itself is said to be asymptotically quasi-compact if K(Tn)⅟n → 0 as n → ∞. where K(U) = inf ∥U–C∥ for every bounded linear operator U on ℵ into itself, the infimum being taken over all compact linear operators C on ℵ into itself. For a complex Banach space, this is equivalent (cf. [2], pp. 319, 321 and 326) to T being a Riesz operator.


1977 ◽  
Vol 18 (1) ◽  
pp. 13-15 ◽  
Author(s):  
P. G. Spain

Each bounded linear operator a on a Hilbert space K has a hermitian left-support projection p such that and (1 – p)K = ker α* = ker αα*. I demonstrate here that certain operators on Banach spaces also have left supports.Throughout this paper X will be a complex Banach space with norm-dual X', and L(X) will be the Banach algebra of bounded linear operators on X. Two linear subspaces Y and Z of X are orthogonal (in the sense of G. Birkhoff) if ∥ y ∥ ≦ ∥ y + z ∥ (y ∈Y, z ∈ Z); this orthogonality relation is not, in general, symmetric. It is easy to see that pX is orthogonal to (1 – p)X if and only if the norm of p is 0 or 1, when p is a projection on X.


2018 ◽  
Vol 25 (1) ◽  
pp. 73-76
Author(s):  
Pablo Rocha

AbstractIn this note we show that if{f\in H^{p}(\mathbb{R}^{n})\cap L^{s}(\mathbb{R}^{n})}, where{0<p\leq 1<s<\infty}, then there exists a{(p,\infty)}-atomic decomposition which converges tofin{L^{s}(\mathbb{R}^{n})}. From this result, we obtain that a bounded linear operatorTon{L^{s}(\mathbb{R}^{n})}can be extended to a bounded operator from{H^{p}(\mathbb{R}^{n})}into{L^{p}(\mathbb{R}^{n})}if and only ifTis bounded uniformly in{L^{p}}norm on all{(p,\infty)}-atoms. A similar result is also obtained from{H^{p}(\mathbb{R}^{n})}into{H^{p}(\mathbb{R}^{n})}.


1985 ◽  
Vol 37 (5) ◽  
pp. 908-920
Author(s):  
A. D. Andrew

1. In this paper, we investigate the ranges of projections on certain Banach spaces of functions defined on a diadic tree. The notion of a “tree-like” Banach space is due to James 4], who used it to construct the separable space JT which has nonseparable dual and yet does not contain l1. This idea has proved useful. In [3], Hagler constructed a hereditarily c0 tree space, HT, and Schechtman [6] constructed, for each 1 ≦ p ≦ ∞, a reflexive Banach space, STp with a 1-unconditional basis which does not contain lp yet is uniformly isomorphic to for each n.In [1] we showed that if U is a bounded linear operator on JT, then there exists a subspace W ⊂ JT, isomorphic to JT such that either U or (1 — U) acts as an isomorphism on W and UW or (1 — U)W is complemented in JT. In this paper, we establish this result for the Hagler and Schechtman tree spaces.


1991 ◽  
Vol 14 (3) ◽  
pp. 611-614 ◽  
Author(s):  
James R. Holub

It is shown that ifXis a uniformly convex Banach space andSa bounded linear operator onXfor which‖I−S‖=1, thenSis invertible if and only if‖I−12S‖<1. From this it follows that ifSis invertible onXthen either (i)dist(I,[S])<1, or (ii)0is the unique best approximation toIfrom[S], a natural (partial) converse to the well-known sufficient condition for invertibility thatdist(I,[S])<1.


CAUCHY ◽  
2017 ◽  
Vol 4 (4) ◽  
pp. 167
Author(s):  
Minanur Rohman

<p class="AbstractCxSpFirst">In this paper, we will discuss some applications of almost surjective epsilon-isometry mapping, one of them is in Lorentz space ( L_(p,q)-space). Furthermore, using some classical theorems of w star-topology and concept of closed subspace -complemented, for every almost surjective epsilon-isometry mapping  <em>f </em>: <em>X to</em><em> Y</em>, where <em>Y</em> is a reflexive Banach space, then there exists a bounded linear operator   <em>T</em> : <em>Y to</em><em> X</em>  with  such that</p><p class="AbstractCxSpMiddle">  </p><p class="AbstractCxSpLast">for every x in X.</p>


Sign in / Sign up

Export Citation Format

Share Document