scholarly journals The Poisson equation in homogeneous Sobolev spaces

2004 ◽  
Vol 2004 (36) ◽  
pp. 1909-1921
Author(s):  
Tatiana Samrowski ◽  
Werner Varnhorn

We consider Poisson's equation in ann-dimensional exterior domainG(n≥2)with a sufficiently smooth boundary. We prove that for external forces and boundary values given in certainLq(G)-spaces there exists a solution in the homogeneous Sobolev spaceS2,q(G), containing functions being local inLq(G)and having second-order derivatives inLq(G)Concerning the uniqueness of this solution we prove that the corresponding nullspace has the dimensionn+1, independent ofq.

2021 ◽  
Vol 47 (1) ◽  
pp. 203-235
Author(s):  
Feng Liu ◽  
Qingying Xue ◽  
Kôzô Yabuta

Let \(\Omega\) be a subdomain in \(\mathbb{R}^n\) and \(M_\Omega\) be the local Hardy-Littlewood maximal function. In this paper, we show that both the commutator and the maximal commutator of \(M_\Omega\) are bounded and continuous from the first order Sobolev spaces \(W^{1,p_1}(\Omega)\) to \(W^{1,p}(\Omega)\) provided that \(b\in W^{1,p_2}(\Omega)\), \(1<p_1,p_2,p<\infty\) and \(1/p=1/p_1+1/p_2\). These are done by establishing several new pointwise estimates for the weak derivatives of the above commutators. As applications, the bounds of these operators on the Sobolev space with zero boundary values are obtained.


2021 ◽  
Vol 23 (1) ◽  
Author(s):  
Thomas Eiter ◽  
Mads Kyed

AbstractThe equations governing the flow of a viscous incompressible fluid around a rigid body that performs a prescribed time-periodic motion with constant axes of translation and rotation are investigated. Under the assumption that the period and the angular velocity of the prescribed rigid-body motion are compatible, and that the mean translational velocity is non-zero, existence of a time-periodic solution is established. The proof is based on an appropriate linearization, which is examined within a setting of absolutely convergent Fourier series. Since the corresponding resolvent problem is ill-posed in classical Sobolev spaces, a linear theory is developed in a framework of homogeneous Sobolev spaces.


2020 ◽  
Vol 32 (4) ◽  
pp. 995-1026
Author(s):  
Carme Cascante ◽  
Joaquín M. Ortega

AbstractIn this paper, we show that if {b\in L^{2}(\mathbb{R}^{n})}, then the bilinear form defined on the product of the non-homogeneous Sobolev spaces {H_{s}^{2}(\mathbb{R}^{n})\times H_{s}^{2}(\mathbb{R}^{n})}, {0<s<1}, by(f,g)\in H_{s}^{2}(\mathbb{R}^{n})\times H_{s}^{2}(\mathbb{R}^{n})\to\int_{% \mathbb{R}^{n}}(\mathrm{Id}-\Delta)^{\frac{s}{2}}(fg)(\mathbf{x})b(\mathbf{x})% \mathop{}\!d\mathbf{x}is continuous if and only if the positive measure {\lvert b(\mathbf{x})\rvert^{2}\mathop{}\!d\mathbf{x}} is a trace measure for {H_{s}^{2}(\mathbb{R}^{n})}.


Sign in / Sign up

Export Citation Format

Share Document