scholarly journals Transient disturbances in a relaxing thermoelastic half space due to moving internal heat source

1998 ◽  
Vol 21 (3) ◽  
pp. 595-602 ◽  
Author(s):  
Sarbani Chakravorty ◽  
Amitava Chakravorty

This paper is concerned with the transient waves created by a line heat source that suddenly starts moving with a uniform velocity inside a thermoelastic semi-infinite medium with thermal relaxation of the type of Lord and Shulman. The source moves parallel to the boundary surface which is traction-free. The problem is reduced to the solution of three differential equations, one involving the elastic vector potential, and the other two coupled, involving the thermoelastic scalar potential and the temperature. Using Fourier and Laplace transforms, the solution for the displacements have been obtained in the transform domain. The displacements have been calculated on the boundary surface for small time.

2014 ◽  
Vol 92 (5) ◽  
pp. 425-434 ◽  
Author(s):  
Sunita Deswal ◽  
Renu Yadav

The dynamical interactions caused by a line heat source moving inside a homogeneous isotropic thermo-microstretch viscoelastic half space, whose surface is subjected to a thermal load, are investigated. The formulation is in the context of generalized thermoelasticity theories proposed by Lord and Shulman (J. Mech. Phys. Solid, 15, 299 (1967)) and Green and Lindsay (Thermoelasticity, J. Elasticity, 2, 1 (1972)). The surface is assumed to be traction free. The solutions in terms of displacement components, mechanical stresses, temperature, couple stress, and microstress distribution are procured by employing the normal mode analysis. The numerical estimates of the considered variables are obtained for an aluminium–epoxy material. The results obtained are demonstrated graphically to show the effect of moving heat source and viscosity on the displacement, stresses, and temperature distribution.


Author(s):  
Carolina Palma Naveira Cotta ◽  
Kelvin Chen ◽  
Christopher Tostado ◽  
Philippe Rollemberg d'Egmont ◽  
Fernando Duda ◽  
...  

2017 ◽  
Author(s):  
Izzati Khalidah Khalid ◽  
Nor Fadzillah Mohd Mokhtar ◽  
Zailan Siri ◽  
Zarina Bibi Ibrahim ◽  
Siti Salwa Abd Gani

Sign in / Sign up

Export Citation Format

Share Document