scholarly journals Whole Genomic Copy Number Alterations in Circulating Tumor Cells from Men with Abiraterone or Enzalutamide-Resistant Metastatic Castration-Resistant Prostate Cancer

2016 ◽  
Vol 23 (5) ◽  
pp. 1346-1357 ◽  
Author(s):  
Santosh Gupta ◽  
Jing Li ◽  
Gabor Kemeny ◽  
Rhonda L. Bitting ◽  
Joshua Beaver ◽  
...  
2014 ◽  
Vol 32 (4_suppl) ◽  
pp. 65-65
Author(s):  
Andrew J. Armstrong ◽  
Jing Li ◽  
Joshua Beaver ◽  
Rhonda Lynn Bitting ◽  
Simon Gregory

65 Background: Given the evolving treatments available in metastatic castration resistant prostate cancer (mCRPC), predictive biomarkers are desirable that maximize benefit and minimize harms and costs.The goal of this study was to determine the feasibility of DNA copy number and whole exome sequencing (WES) analysis of circulating tumor cells (CTCs) from men with mCRPC receiving enzalutamide. Methods: We collected CTCs from men with mCRPC in the context of enzalutamide therapy. CTCs were isolated from EDTA blood through red cell lysis, CD45 depletion, and flow sorting on EpCAM/CD45 expression. Whole genomic amplification and array based comparative genomic hybridization (CGH) was performed using Qiagen Repli-Gene Single Cell kit, multiple displacement amplification, and Agilent microarray analysis. CTC copy number changes were compared with patient leukocyte DNA and reference metastatic PC datasets. CTC AR amplification and PTEN loss was confirmed with FISH. WES on REPLI-g amplified CTC and leukocyte DNA was performed using GeneWiz and TruSeq Exome Capture Kit, and sequenced with Illumina HiSeq 2000 (20x). Results: A novel method for CTC array CGH was developed that reproducibly identified genomic lesions previously reported in metastatic CRPC including: AR amplification or focal deletions, deletions of CHD1, Rb, PHLLP, FGFR2, FOXA1, and NCOA2, and amplifications of EZH2 and MYC. AR amplification was noted in a man with mCRPC who subsequently responded to enzalutamide, with loss of AR amplification and gain of MYCN and c-MET amplification noted at progression. CGH analysis was feasible down to 10 to 20 cells using spiked cell lines. Interpatient tumor specific genomic heterogeneity was observed. FISH confirmed AR changes and PTEN loss heterogeneity. WES demonstrated acquired PTEN, MAGI1, SMAD4, and RB1 mutations in a patient who progressed through enzalutamide therapy, in addition to AR region deletion detected by CGH. Conclusions: Whole genome DNA copy number and exome sequencing analysis from CTCs in men with mCRPC is feasible in men with high CTCs and identified previously validated and novel genomic lesions and suggest the potential to identify predictive biomarkers of enzalutamide efficacy and resistance in the clinic.


Sign in / Sign up

Export Citation Format

Share Document