scholarly journals Transcription Factor Stat5 Knockdown Enhances Androgen Receptor Degradation and Delays Castration-Resistant Prostate Cancer Progression In vivo

2011 ◽  
Vol 10 (2) ◽  
pp. 347-359 ◽  
Author(s):  
Christian Thomas ◽  
Amina Zoubeidi ◽  
Hidetoshi Kuruma ◽  
Ladan Fazli ◽  
Francois Lamoureux ◽  
...  
2021 ◽  
Author(s):  
Thomas C Case ◽  
Alyssa Merkel ◽  
Marisol Ramirez-Solano ◽  
Qi Liu ◽  
Julie A Sterling ◽  
...  

Abstract Background: Clinical management of castration-resistant prostate cancer (CRPC) resulting from androgen deprivation therapy (ADT) remains challenging. Previously, we have reported that long-term ADT increases the neuroendocrine (NE) hormone – Gastrin Releasing Peptide (GRP) and its receptor (GRP-R) expression in prostate cancer (PC) cells. Further, we demonstrated that activation of GRP/GRP-R signaling increases androgen receptor (AR) splice variants (ARVs) expression through activating NF-κB signaling thereby contributing cancer progression to CRPC. Most importantly, as a cell surface protein, GRP-R is easily targeted by drugs to block GRP/GRP-R signaling. Here, we aim to investigate if blocking GRP/GRP-R signaling by targeting GRP-R using GRP-R antagonist is sufficient to control CRPC progression, including in therapy-induced (t) neuroendocrine prostate cancer (tNEPC). Methods: Bone-growing NEPC cells were generated by treating androgen dependent LNCaP PC cells with anti-androgen (MDV3100) for more than 3 months. RC-3095, a selective GRP-R antagonist, was used for blocking GRP/GRP-R signaling. The NGL vector [a NF-kB responsive reporter vector which has Luciferase and Green Fluorescent Protein (GFP) reporter genes] was used to measure NF-kB activity and the ARR2PB-Luc vector (an AR responsive reporter vector) was used to measure AR activity in the PC cells. For in vivo experiments, the effect of RC-3095 on CRPC was observed in subcutaneous CRPC and bone-growing tNEPC tumor models.Results: Our studies show that blocking GRP/GRP-R signal by targeting GRP-R using RC-3095 efficiently inhibits NF-κB activity and ARVs (AR-V7) expression in CRPC and tNEPC cells. In addition, blocking of GRP/GRP-R signaling by targeting GRP-R can sensitize CRPC cells to anti-androgen treatment. Further, preclinical animal studies indicate combination of GRP-R antagonist (targeting ARVs) with anti-androgen [targeting full-length AR (AR-FL)] is sufficient to inhibit CRPC and tNEPC tumor growth.Conclusion: Our findings strongly indicate that blocking of GRP/GRP-R signaling in combination with ADT is a potential new approach to control CRPC tumor growth, including ADT induced tNEPC.


Tumor Biology ◽  
2017 ◽  
Vol 39 (5) ◽  
pp. 101042831769225 ◽  
Author(s):  
Jieping Hu ◽  
Gongxian Wang ◽  
Ting Sun

Androgen receptor plays a pivotal role in prostate cancer progression, and androgen deprivation therapy to intercept androgen receptor signal pathway is an indispensable treatment for most advanced prostate cancer patients to delay cancer progression. However, the emerging of castration-resistant prostate cancer reminds us the alteration of androgen receptor, which includes androgen receptor mutation, the formation of androgen receptor variants, and androgen receptor distribution in cancer cells. In this review, we introduce the process of androgen receptor and also its variants’ formation, translocation, and function alteration by protein modification or interaction with other pathways. We dissect the roles of androgen receptor in prostate cancer from molecular perspective to provide clues for battling prostate cancer, especially castration-resistant prostate cancer.


Sign in / Sign up

Export Citation Format

Share Document