splice variants
Recently Published Documents





2022 ◽  
Jiaxin Gong ◽  
Niraj K. Nirala ◽  
Jiazhang Chen ◽  
Fei Wang ◽  
Pengyu Gu ◽  

Adult stem cells are essential for maintaining normal tissue homeostasis and supporting tissue repair. Although genetic and biochemical programs controlling adult stem cell behavior have been extensively investigated, how mechanosensing regulates stem cells and tissue homeostasis is not well understood. Here, we show that shear stress can activate enteroendocrine cells, but not other gut epithelial cell types, to regulate intestine stem cell-mediated gut homeostasis. This shear stress sensing is mediated by transient receptor potential A1 (TrpA1), a Ca2+-permeable ion channel expressed only in enteroendocrine cells among all gut epithelial cells. Genetic depletion of TrpA1 or modification of its shear stress sensing function causes reduced intestine stem cell proliferation and intestine growth. We further show that among the TrpA1 splice variants, only select isoforms are activated by shear stress. Altogether, our results suggest the naturally occurring mechanical force such as fluid passing generated shear stress regulates intestinal stem cell-mediated tissue growth by activating enteroendocrine cells, and Drosophila TrpA1 as a new shear stress sensor.

2022 ◽  
Vol 12 ◽  
Adrián Ramírez-de-Arellano ◽  
Ana Laura Pereira-Suárez ◽  
Cecilia Rico-Fuentes ◽  
Edgar Iván López-Pulido ◽  
Julio César Villegas-Pineda ◽  

Estrogens are hormones that have been extensively presented in many types of cancer such as breast, uterus, colorectal, prostate, and others, due to dynamically integrated signaling cascades that coordinate cellular growth, differentiation, and death which can be potentially new therapeutic targets. Despite the historical use of estrogens in the pathogenesis of prostate cancer (PCa), their biological effect is not well known, nor their role in carcinogenesis or the mechanisms used to carry their therapeutic effects of neoplastic in prostate transformation. The expression and regulation of the estrogen receptors (ERs) ERα, ERβ, and GPER stimulated by agonists and antagonists, and related to prostate cancer cells are herein reviewed. Subsequently, the structures of the ERs and their splice variants, the binding of ligands to ERs, and the effect on PCa are provided. Finally, we also assessed the contribution of molecular simulation which can help us to search and predict potential estrogenic activities.

2022 ◽  
Vol 12 (1) ◽  
Rebeca Uceda-Castro ◽  
Jessy V. van Asperen ◽  
Claire Vennin ◽  
Jacqueline A. Sluijs ◽  
Emma J. van Bodegraven ◽  

AbstractGlioma is the most common form of malignant primary brain tumours in adults. Their highly invasive nature makes the disease incurable to date, emphasizing the importance of better understanding the mechanisms driving glioma invasion. Glial fibrillary acidic protein (GFAP) is an intermediate filament protein that is characteristic for astrocyte- and neural stem cell-derived gliomas. Glioma malignancy is associated with changes in GFAP alternative splicing, as the canonical isoform GFAPα is downregulated in higher-grade tumours, leading to increased dominance of the GFAPδ isoform in the network. In this study, we used intravital imaging and an ex vivo brain slice invasion model. We show that the GFAPδ and GFAPα isoforms differentially regulate the tumour dynamics of glioma cells. Depletion of either isoform increases the migratory capacity of glioma cells. Remarkably, GFAPδ-depleted cells migrate randomly through the brain tissue, whereas GFAPα-depleted cells show a directionally persistent invasion into the brain parenchyma. This study shows that distinct compositions of the GFAPnetwork lead to specific migratory dynamics and behaviours of gliomas.

2022 ◽  
Vol 18 (1) ◽  
pp. e1010193
Quang Vinh Phan ◽  
Boris Bogdanow ◽  
Emanuel Wyler ◽  
Markus Landthaler ◽  
Fan Liu ◽  

The chimpanzee cytomegalovirus (CCMV) is the closest relative of human CMV (HCMV). Because of the high conservation between these two species and the ability of human cells to fully support CCMV replication, CCMV holds great potential as a model system for HCMV. To make the CCMV genome available for precise and rapid gene manipulation techniques, we captured the genomic DNA of CCMV strain Heberling as a bacterial artificial chromosome (BAC). Selected BAC clones were reconstituted to infectious viruses, growing to similar high titers as parental CCMV. DNA sequencing confirmed the integrity of our clones and led to the identification of two polymorphic loci and a deletion-prone region within the CCMV genome. To re-evaluate the CCMV coding potential, we analyzed the viral transcriptome and proteome and identified several novel ORFs, splice variants, and regulatory RNAs. We further characterized the dynamics of CCMV gene expression and found that viral proteins cluster into five distinct temporal classes. In addition, our datasets revealed that the host response to CCMV infection and the de-regulation of cellular pathways are in line with known hallmarks of HCMV infection. In a first functional experiment, we investigated a proposed frameshift mutation in UL128 that was suspected to restrict CCMV’s cell tropism. In fact, repair of this frameshift re-established productive CCMV infection in endothelial and epithelial cells, expanding the options of CCMV as an infection model. Thus, BAC-cloned CCMV can serve as a powerful tool for systematic approaches in comparative functional genomics, exploiting the close phylogenetic relationship between CCMV and HCMV.

2022 ◽  
Vol 11 (1) ◽  
pp. 257
Francis P. Young ◽  
Therese M. Becker ◽  
Mohammed Nimir ◽  
Thomas Opperman ◽  
Wei Chua ◽  

Androgen Receptor (AR) alterations (amplification, point mutations, and splice variants) are master players in metastatic castration resistant prostate cancer (CRPC) progression and central therapeutic targets for patient management. Here, we have developed two multiplexed droplet digital PCR (ddPCR) assays to detect AR copy number (CN) and the key point mutation T877A. Overcoming challenges of determining gene amplification from liquid biopsies, these assays cross-validate each other to produce reliable AR amplification and mutation data from plasma cell free DNA (cfDNA) of advanced prostate cancer (PC) patients. Analyzing a mixed PC patient cohort consisting of CRPC and hormone sensitive prostate cancer (HSPC) patients showed that 19% (9/47) patients had AR CN amplification. As expected, only CRPC patients were positive for AR amplification, while interestingly the T877A mutation was identified in two patients still considered HSPC at the time. The ddPCR based analysis of AR alterations in cfDNA is highly economic, feasible, and informative to provide biomarker detection that may help to decide on the best follow-up therapy for CRPC patients.

2021 ◽  
Ricardo Harripaul ◽  
Ansa Rabia ◽  
Nasim Vasli ◽  
Anna Mikhailov ◽  
Ashlyn Rodrigues ◽  

Autism spectrum disorder (ASD) is a severe neurodevelopmental disorder that affects about 1 in 55 children worldwide and imposes enormous economic and socioemotional burden on families and communities. Genetic studies of ASD have identified de novo copy number variants (CNVs) and point mutations that contribute significantly to the genetic architecture of ASD, but the majority of these studies were conducted in outbred populations, which are not ideal for detecting autosomal recessive (AR) inheritance. However, several studies have investigated ASD genetics in consanguineous populations and point towards AR as an under-appreciated source of ASD variants. Here, we used trio whole exome sequencing (WES) to look for rare variants for ASD in 115 proband-mother-father trios from populations with high rates of consanguinity, namely Pakistan, Iran, and Saudi Arabia. In total, we report 87 candidate sequence variants, with 57% biallelic, 21% autosomal dominant/de novo, and the rest X-linked. 52% of the variants were loss of function (LoF) or putative LoF (splice site, stop loss) and 47% non-synonymous. Our analysis indicates an enrichment of previously identified and candidate AR genes. These include variants in genes previously reported for AR ASD and/or intellectual disability (ID), such as AGA, ASL, ASPA, BTN3A2, CC2D1A, DEAF1, HTRA2, KIF16B, LINS1, MADD, MED25, MTHFR, RSRC1, TECPR2, VPS13B, ZNF335, and 32 previously unreported candidates, including 15 LoF or splice variants, in genes such as DAGLA, EFCAB8, ENPP6, FAXDC2, ILDR2, PKD1L1, SCN10A, and SLC36A1. We also identified candidate biallelic exonic loss CNVs a number of trios, implicating genes including DNAH7, and DHRS4/DHRS4L2.

Proteomes ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 1
Kira Vyatkina

De novo sequencing is indispensable for the analysis of proteins from organisms with unknown genomes, novel splice variants, and antibodies. However, despite a variety of methods developed to this end, distinguishing between the correct interpretation of a mass spectrum and a number of incorrect alternatives often remains a challenge. Tag convolution is computed for a set of peptide sequence tags of a fixed length k generated from the input tandem mass spectra and can be viewed as a generalization of the well-known spectral convolution. We demonstrate its utility for validating de novo peptide sequences by using a set of those generated by the algorithm PepNovo+ from high-resolution bottom-up data sets for carbonic anhydrase 2 and the Fab region of alemtuzumab and indicate its further potential applications.

2021 ◽  
Patrick Pagesy ◽  
Abdelouhab Bouaboud ◽  
Zhihao Feng ◽  
Philippe Hulin ◽  
Tarik Issad

O-GlcNAcylation is a reversible post-translational modification involved the regulation of cytosolic, nuclear and mitochondrial proteins. Only two enzymes, OGT and OGA, control attachment and removal of O-GlcNAc on proteins, respectively. Whereas a variant OGT (mOGT) has been proposed as the main isoform that O-GlcNAcylates proteins in mitochondria, identification of a mitochondrial OGA has not been performed yet. Two splice variants of OGA (short and long isoforms) have been described previously. In this work, using cell fractionation experiments, we show that short-OGA is preferentially recovered in mitochondria-enriched fractions from HEK-293T cells as well as mouse embryonic fibroblasts. Moreover, fluorescent microscopy imaging confirmed that GFP-tagged short-OGA is addressed to mitochondria. In addition, using a BRET-based mitochondrial O-GlcNAcylation biosensor, we show that co-transfection of short-OGA markedly reduced O-GlcNAcylation of the biosensor, whereas long-OGA had no significant effect. Finally, using genetically encoded or chemical fluorescent mitochondrial probes, we showed that short-OGA overexpression increases mitochondrial ROS levels, whereas long-OGA had no significant effect. Together, our work reveals that the short-OGA isoform is targeted to the mitochondria where it regulates ROS homoeostasis.

2021 ◽  
Takumi Ito ◽  
Kazutoshi Yoshitake ◽  
Takeshi Iwata

The 'ePat' (extended PROVEAN annotation tool) is a software tool that extends the functionality of PROVEAN: a software tool for predicting whether amino acid substitutions and indels will affect the biological function of proteins. The 'ePat' extends the conventional PROVEAN to enable the following two things. First is to calculate the pathogenicity of indel mutations with frameshift and variants near splice junctions, for which the conventional PROVEAN could not calculate the pathogenicity of these variants. Second is to use batch processing to calculate the pathogenicity of multiple variants in a variants list (VCF file) in a single step. In order to identify variants that are predicted to be functionally important from the variants list, ePat can help filter out variants that affect biological functions by utilizing not only point mutations, and indel mutations that does not cause frameshift, but also frameshift, stop gain, and splice variants.

2021 ◽  
Vol 22 (24) ◽  
pp. 13294
Luke Mansard ◽  
David Baux ◽  
Christel Vaché ◽  
Catherine Blanchet ◽  
Isabelle Meunier ◽  

Usher syndrome is an autosomal recessive disorder characterized by congenital hearing loss combined with retinitis pigmentosa, and in some cases, vestibular areflexia. Three clinical subtypes are distinguished, and MYO7A and USH2A represent the two major causal genes involved in Usher type I, the most severe form, and type II, the most frequent form, respectively. Massively parallel sequencing was performed on a cohort of patients in the context of a molecular diagnosis to confirm clinical suspicion of Usher syndrome. We report here 231 pathogenic MYO7A and USH2A genotypes identified in 73 Usher type I and 158 Usher type II patients. Furthermore, we present the ACMG classification of the variants, which comprise all types. Among them, 68 have not been previously reported in the literature, including 12 missense and 16 splice variants. We also report a new deep intronic variant in USH2A. Despite the important number of molecular studies published on these two genes, we show that during the course of routine genetic diagnosis, undescribed variants continue to be identified at a high rate. This is particularly pertinent in the current era, where therapeutic strategies based on DNA or RNA technologies are being developed.

Sign in / Sign up

Export Citation Format

Share Document