Abstract 4274: Prolidase directly binds and activates epidermal growth factor receptor and stimulates downstream signaling.

Author(s):  
Lu Yang
2016 ◽  
Vol 291 (11) ◽  
pp. 5528-5540 ◽  
Author(s):  
Tom Ronan ◽  
Jennifer L. Macdonald-Obermann ◽  
Lorel Huelsmann ◽  
Nicholas J. Bessman ◽  
Kristen M. Naegle ◽  
...  

2009 ◽  
Vol 55 (7) ◽  
pp. 1327-1336 ◽  
Author(s):  
Fadila Chergui ◽  
Anne-Sophie Chrétien ◽  
Sanae Bouali ◽  
Carole Ramacci ◽  
Marie Rouyer ◽  
...  

Abstract Background: Human epidermal growth factor receptor (HER) downstream signaling kinases have important effects on tumor response to anti-HER monoclonal antibodies and tyrosine kinase inhibitors. We validated an assay that uses phosphoprotein arrays for measurement of HER downstream signaling functionality in breast carcinomas. Methods: Using the Bio-Plex® phosphoprotein array (BPA), we performed multiplex immunoanalysis to investigate the expression of phosphorylated epidermal growth factor receptor and phosphorylated HER downstream signaling proteins (phosphorylated protein kinase B, phosphorylated glycogen synthase kinase −3β, phosphorylated P70 ribosomal protein S6 kinase, and phosphorylated extracellular signal regulated kinase 42/44) in 49 frozen specimens of ductal infiltrating breast carcinoma taken at diagnosis. BPA was cross-validated with Western blot analysis. Sample size, homogenicity, tumor content, protein extraction, and monoclonal antibody detection were in accordance with optimized standard operating procedures. Results: Linear regression showed significant quantitative correlations between BPA and Western blot, with regression coefficient values of 0.71–0.87 (P < 0.001). BPA intra- and interassay CVs were <17% and 15%, respectively. Compared to limits of detection established by using the mean + 3SD of 10 blanks, large variations of phosphoprotein expression, up to several hundred-fold, were observed among the 49 tumor specimens. Conclusions: Our results validate the use of the multiplex phosphoprotein array assay in human clinical tumor specimens. Further prospective evaluation is warranted to investigate the use of HER downstream signaling phosphoproteins as predictive and/or surrogate markers for clinical response to anti-HER targeted therapy. .


2021 ◽  
Vol 23 (Supplement_6) ◽  
pp. vi165-vi166
Author(s):  
Evan Noch ◽  
Iyad Alnahhas ◽  
Laura Palma ◽  
Lewis Cantley

Abstract Epidermal growth factor receptor (EGFR) alterations, including amplification and activating mutations, occur in more than half of GBM cases. EGFR is located on Chr. 7, and Chr. 7 gain is one of the earliest events precipitating gliomagenesis. EGFR inhibitors, monoclonal antibodies, vaccines, and CAR-T cells have failed in GBM due to intrinsic heterogeneity and receptor tyrosine kinase (RTK) bypass pathways that mediate therapeutic resistance. New targeted therapeutic approaches to leverage synergistic combinations are desperately needed to improve GBM prognosis. Using the TCGA and other GBM databases, we previously demonstrated that PDGFRA amplification in patients with EGFR-amplified GBM carries significantly worse survival. EGFR and PDGFRA co-expression occur in more than one-third of GBM patients. The PDGFRA ligand PDGFA is also located on Chr. 7, and its expression is significantly increased with Chr. 7 gain and EGFR copy number increase. Therefore, Chr. 7 gain inherently leads to co-activation of both EGFR and PDGFRA signaling. We used patient-derived glioblastoma cells with Chr. 7 gain to test combined inhibition of EGFR and PDGFRA in vitro. We found that combined inhibition of both EGFR and PDGFRA using FDA-approved EGFR-targeted agents (Erlotinib, Gefitinib, Dacomitinib, Neratinib, and Osimertinib) and Crenolanib, respectively, leads to synergistic cytotoxicity in vitro. Inhibition of either EGFR or PDGFRA led to receptor cross-activation, and EGF and PDGF-AA-induced RTK activation was blocked by Neratinib and Crenolanib. Immunoprecipitation experiments and proximity ligation assays demonstrated that combined inhibition prevents EGFR and PDGFRA heterodimerization and pathways of therapeutic resistance. This combined inhibition led to decreased activation of downstream signaling pathways, including PI3K and MAPK. We show that combined inhibition of EGFR and PDGFRA exerts synergistic cytotoxicity in GBM and prevents resistance pathways that emerge during single-agent targeted therapy. These pathways are targetable with FDA-approved agents that could be used in patients with GBM with Chr. 7 gain.


Sign in / Sign up

Export Citation Format

Share Document