nonmuscle myosin
Recently Published Documents


TOTAL DOCUMENTS

466
(FIVE YEARS 40)

H-INDEX

67
(FIVE YEARS 4)

2021 ◽  
Author(s):  
Kai Weissenbruch ◽  
Magdalena Fladung ◽  
Justin Grewe ◽  
Laurent Baulesch ◽  
Ulrich Sebastian Schwarz ◽  
...  

Nonmuscle myosin II minifilaments have emerged as central elements for force generation and mechanosensing by mammalian cells. Each minifilament can have a different composition and activity due to the existence of the three nonmuscle myosin II isoforms A, B and C and their respective phosphorylation pattern. We have used CRISPR/Cas9-based knockout cells, quantitative image analysis and mathematical modelling to dissect the dynamic processes that control the formation and activity of heterotypic minifilaments and found a strong asymmetry between isoforms A and B. Loss of NM IIA completely abrogates regulatory light chain phosphorylation and reduces the level of assembled NM IIB. Activated NM IIB preferentially co-assembles into pre-formed NM IIA minifilaments and stabilizes the filament in a force-dependent mechanism. NM IIC is only weakly coupled to these processes. We conclude that NM IIA and B play clearly defined complementary roles during assembly of functional minifilaments. NM IIA is responsible for the formation of nascent pioneer minifilaments. NM IIB incorporates into these and acts as a clutch that limits the force output to prevent excessive NM IIA activity. Together these two isoforms form a balanced system for regulated force generation.


2021 ◽  
Vol 118 (50) ◽  
pp. e2111011118
Author(s):  
Jian Chen ◽  
Jun Fan ◽  
Zhilu Chen ◽  
Miaomiao Zhang ◽  
Haoran Peng ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19), binds to host receptor angiotensin-converting enzyme 2 (ACE2) through its spike (S) glycoprotein, which mediates membrane fusion and viral entry. However, the expression of ACE2 is extremely low in a variety of human tissues, especially in the airways. Thus, other coreceptors and/or cofactors on the surface of host cells may contribute to SARS-CoV-2 infection. Here, we identified nonmuscle myosin heavy chain IIA (MYH9) as an important host factor for SARS-CoV-2 infection of human pulmonary cells by using APEX2 proximity-labeling techniques. Genetic ablation of MYH9 significantly reduced SARS-CoV-2 pseudovirus infection in wild type (WT) A549 and Calu-3 cells, and overexpression of MYH9 enhanced the pseudovirus infection in WT A549 and H1299 cells. MYH9 was colocalized with the SARS-CoV-2 S and directly interacted with SARS-CoV-2 S through the S2 subunit and S1-NTD (N-terminal domain) by its C-terminal domain (designated as PRA). Further experiments suggested that endosomal or myosin inhibitors effectively block the viral entry of SARS-CoV-2 into PRA-A549 cells, while transmembrane protease serine 2 (TMPRSS2) and cathepsin B and L (CatB/L) inhibitors do not, indicating that MYH9 promotes SARS-CoV-2 endocytosis and bypasses TMPRSS2 and CatB/L pathway. Finally, we demonstrated that loss of MYH9 reduces authentic SARS-CoV-2 infection in Calu-3, ACE2-A549, and ACE2-H1299 cells. Together, our results suggest that MYH9 is a candidate host factor for SARS-CoV-2, which mediates the virus entering host cells by endocytosis in an ACE2-dependent manner, and may serve as a potential target for future clinical intervention strategies.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Kai Weißenbruch ◽  
Justin Grewe ◽  
Marc Hippler ◽  
Magdalena Fladung ◽  
Moritz Tremmel ◽  
...  

Nonmuscle myosin II (NM II) is an integral part of essential cellular processes, including adhesion and migration. Mammalian cells express up to three isoforms termed NM IIA, B, and C. We used U2OS cells to create CRISPR/Cas9-based knockouts of all three isoforms and analyzed the phenotypes on homogenously-coated surfaces, in collagen gels, and on micropatterned substrates. In contrast to homogenously-coated surfaces, a structured environment supports a cellular phenotype with invaginated actin arcs even in the absence of NM IIA-induced contractility. A quantitative shape analysis of cells on micropatterns combined with a scale-bridging mathematical model reveals that NM IIA is essential to build up cellular tension during initial stages of force generation, while NM IIB is necessary to elastically stabilize NM IIA-generated tension. A dynamic cell stretch/release experiment in a three-dimensional scaffold confirms these conclusions and in addition reveals a novel role for NM IIC, namely the ability to establish tensional homeostasis.


Author(s):  
Marina Garrido-Casado ◽  
Gloria Asensio-Juárez ◽  
Miguel Vicente-Manzanares

Nonmuscle myosin II (NMII) is a multimeric protein complex that generates most mechanical force in eukaryotic cells. NMII function is controlled at three main levels. The first level includes events that trigger conformational changes that extend the complex to enable its assembly into filaments. The second level controls the ATPase activity of the complex and its binding to microfilaments in extended NMII filaments. The third level includes events that modulate the stability and contractility of the filaments. They all work in concert to finely control force generation inside cells. NMII is a common endpoint of mechanochemical signaling pathways that control cellular responses to physical and chemical extracellular cues. Specific phosphorylations modulate NMII activation in a context-dependent manner. A few kinases control these phosphorylations in a spatially, temporally, and lineage-restricted fashion, enabling functional adaptability to the cellular microenvironment. Here, we review mechanisms that control NMII activity in the context of cell migration and division. Expected final online publication date for the Annual Review of Cell and Developmental Biology, Volume 37 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Vol 220 (8) ◽  
Author(s):  
Ewelina Trela ◽  
Qiang Lan ◽  
Satu-Marja Myllymäki ◽  
Clémentine Villeneuve ◽  
Riitta Lindström ◽  
...  

The mammary gland develops from the surface ectoderm during embryogenesis and proceeds through morphological phases defined as placode, hillock, bud, and bulb stages followed by branching morphogenesis. During this early morphogenesis, the mammary bud undergoes an invagination process where the thickened bud initially protrudes above the surface epithelium and then transforms to a bulb and sinks into the underlying mesenchyme. The signaling pathways regulating the early morphogenetic steps have been identified to some extent, but the underlying cellular mechanisms remain ill defined. Here, we use 3D and 4D confocal microscopy to show that the early growth of the mammary rudiment is accomplished by migration-driven cell influx, with minor contributions of cell hypertrophy and proliferation. We delineate a hitherto undescribed invagination mechanism driven by thin, elongated keratinocytes—ring cells—that form a contractile rim around the mammary bud and likely exert force via the actomyosin network. Furthermore, we show that conditional deletion of nonmuscle myosin IIA (NMIIA) impairs invagination, resulting in abnormal mammary bud shape.


2021 ◽  
Author(s):  
Allison M Gabbert ◽  
James Mondo ◽  
Joseph P Campanale ◽  
Denise J Montell

Collective cell migration is prevalent throughout development and common in metastatic tumors, yet this process is not fully understood. In this study, we explore the role of septins (Sep) in collective cell migration, using the Drosophila border cell model. We show that Sep2 and Pnut are expressed in migrating border cells and Sep1, 2, 4, and Peanut (Pnut) are required for migration. Pnut stability depends on the expression of Sep1 and Sep2 in epithelial follicle cells and migratory border cells. We show that knockdown of septins prevents normal protrusion and detachment behaviors. High resolution Airyscan imaging reveals Pnut localization in rings at the base of protrusions. While septins function independently of Cdc42, they colocalize dynamically with nonmuscle myosin II. We suggest that septin polymers may stabilize growing protrusions until sufficient myosin is recruited to retract them.


Stroke ◽  
2021 ◽  
Vol 52 (3) ◽  
pp. 1053-1064
Author(s):  
Shuaishuai Gong ◽  
Guosheng Cao ◽  
Fang Li ◽  
Zhuo Chen ◽  
Xuewei Pan ◽  
...  

Background and Purpose: In ischemic stroke, breakdown of the blood-brain barrier (BBB) aggravates brain damage. Endothelial detachment contributes to BBB disruption and neurovascular dysfunction, but its regulation in stroke has yet to be clarified. We investigated the function of NMMHC IIA (nonmuscle myosin heavy chain IIA) in the endothelium on BBB breakdown and its potential mechanisms. Methods: Endothelial conditional knockdown NMMHC IIA ( Myh9 ECKD ) was constructed in vivo and in vitro, and its role was explored in middle cerebral artery occlusion/reperfusion–injured mice and oxygen-glucose deprivation/reoxygenation–injured brain microvascular endothelial cells. The degree of brain injury was analyzed using staining (2,3,5-triphenyltetrazolium chloride, hematoxylin, and eosin) and electron microscopy. BBB breakdown was investigated with leakage of Evans Blue dye and expression of TJs (tight junctions) and MMP (matrix metallopeptidase)-2/9. Transcriptomics for enrichment analysis was adopted to explore the potential downstream signaling pathways of NMMHC IIA involved in middle cerebral artery occlusion/reperfusion–induced BBB dysfunction. Results: NMMHC IIA expression was upregulated in endothelial cells after cerebral ischemia/reperfusion injury. Myh9 ECKD mice exhibited improvement in endothelial barrier hyperpermeability and TJs integrity stimulated by cerebral ischemia/reperfusion. Blebbistatin (NMMHC II inhibitor) treatment exerted the same effect. Transcriptomics showed that NMMHC IIA was involved in regulating various BBB-related genomic changes in the middle cerebral artery occlusion/reperfusion model, and NMMHC IIA was confirmed to significantly modulate Hippo and peroxisome proliferator-activated receptor gamma/nuclear factor-kappa B signaling pathways, which are closely related to BBB damage. Conclusions: Our findings provide some new insights into how NMMHC IIA contributes to maintaining the integrity of the cerebral endothelial barrier. NMMHC IIA could be a potential therapeutic target for ischemic stroke.


2021 ◽  
Vol 37 (1) ◽  
pp. 47-56
Author(s):  
Alexander Emmott ◽  
Vanessa Hertig ◽  
Alexandre Bergeron ◽  
Louis Villeneuve ◽  
Laurence Lefebvre ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document