downstream signaling
Recently Published Documents


TOTAL DOCUMENTS

1804
(FIVE YEARS 784)

H-INDEX

88
(FIVE YEARS 16)

2022 ◽  
Author(s):  
Thomas J Koehler ◽  
Thao Tran ◽  
Jennifer M Kavran

Canonically, MST1/2 functions as a core kinase of the Hippo pathway and non-canonically is both activated during apoptotic signaling and acts in concert with RASSFs in T-cells. Faithful signal transduction relies on both appropriate activation and regulated substrate phosphorylation by the activated kinase. Considerable progress has been made understanding the molecular mechanisms regulating activation of MST1/2 and identifying downstream signaling events. Here we present a kinetic analysis analyzing how the ability of MST1/2 to phosphorylate substrates is regulated. Using a steady state kinetic system, we parse the contribution of different factors including the domains of MST2, phosphorylation, caspase cleavage, and complex formation to MST2 activity. In the unphosphorylated state, we find the SARAH domain stabilizes substrate binding. Phosphorylation, we also determine, drives activation of MST2 and that once activated the kinase domain is free of regulation. The binding partners SAV1, MOB1A, and RASSF5 do not alter the kinetics of phosphorylated MST2. We also show that the caspase cleaved MST2 fragment is as active as full-length suggesting that the linker region of MST2 does not inhibit the catalytic activity of the kinase domain but instead regulates MST2 activity through non-catalytic mechanisms. This kinetic analysis helps establish a framework for interpreting how signaling events, mutations, and post-translational modifications contribute to signaling of MST2 in vivo.


2022 ◽  
Vol 11 ◽  
Author(s):  
Marc Cucurull ◽  
Lucia Notario ◽  
Montse Sanchez-Cespedes ◽  
Cinta Hierro ◽  
Anna Estival ◽  
...  

Approximately 20% of lung adenocarcinomas harbor KRAS mutations, an oncogene that drives tumorigenesis and has the ability to alter the immune system and the tumor immune microenvironment. While KRAS was considered “undruggable” for decades, specific KRAS G12C covalent inhibitors have recently emerged, although their promising results are limited to a subset of patients. Several other drugs targeting KRAS activation and downstream signaling pathways are currently under investigation in early-phase clinical trials. In addition, KRAS mutations can co-exist with other mutations in significant genes in cancer (e.g., STK11 and KEAP1) which induces tumor heterogeneity and promotes different responses to therapies. This review describes the molecular characterization of KRAS mutant lung cancers from a biologic perspective to its clinical implications. We aim to summarize the tumor heterogeneity of KRAS mutant lung cancers and its immune-regulatory role, to report the efficacy achieved with current immunotherapies, and to overview the therapeutic approaches targeting KRAS mutations besides KRAS G12C inhibitors.


2022 ◽  
Vol 12 ◽  
Author(s):  
Khawar Ali ◽  
Wenjuan Li ◽  
Yaopeng Qin ◽  
Shanshan Wang ◽  
Lijie Feng ◽  
...  

Plants acquire the ability to adapt to the environment using transmembrane receptor-like kinases (RLKs) to sense the challenges from their surroundings and respond appropriately. RLKs perceive a variety of ligands through their variable extracellular domains (ECDs) that activate the highly conserved intracellular kinase domains (KDs) to control distinct biological functions through a well-developed downstream signaling cascade. A new study has emerged that brassinosteroid-insensitive 1 (BRI1) family and excess microsporocytes 1 (EMS1) but not GASSHO1 (GSO1) and other RLKs control distinct biological functions through the same signaling pathway, raising a question how the signaling pathway represented by BRI1 is specified. Here, we confirm that BRI1-KD is not functionally replaceable by GSO1-KD since the chimeric BRI1-GSO1 cannot rescue bri1 mutants. We then identify two subdomains S1 and S2. BRI1 with its S1 and S2 substituted by that of GSO1 cannot rescue bri1 mutants. Conversely, chimeric BRI1-GSO1 with its S1 and S2 substituted by that of BRI1 can rescue bri1 mutants, suggesting that S1 and S2 are the sufficient requirements to specify the signaling function of BRI1. Consequently, all the other subdomains in the KD of BRI1 are functionally replaceable by that of GSO1 although the in vitro kinase activities vary after replacements, suggesting their functional robustness and mutational plasticity with diverse kinase activity. Interestingly, S1 contains αC-β4 loop as an allosteric hotspot and S2 includes kinase activation loop, proposedly regulating kinase activities. Further analysis reveals that this specific function requires β4 and β5 in addition to αC-β4 loop in S1. We, therefore, suggest that BRI1 specifies its kinase function through an allosteric regulation of these two subdomains to control its distinct biological functions, providing a new insight into the kinase evolution.


Author(s):  
Jeremy H Raymond ◽  
Zackie Aktary ◽  
Lionel Larue ◽  
Véronique Delmas

G protein-coupled receptors (GPCRs) serve prominent roles in melanocyte lineage physiology, with an impact at all stages of development, as well as on mature melanocyte functions. GPCR ligands are present in the skin and regulate melanocyte homeostasis, including pigmentation. The role of GPCRs in the regulation of pigmentation and, consequently, protection against external aggression, such as ultraviolet radiation, has long been established. However, evidence of new functions of GPCRs directly in melanomagenesis has been highlighted in recent years. GPCRs are coupled, through their intracellular domains, to heterotrimeric G proteins, which induce cellular signaling through various pathways. Such signaling modulates essential cellular processes of melanomagenesis, such as proliferation and migration. GPCR-associated signaling in melanoma can be activated by the binding of paracrine factors to their receptors or directly by activating mutations. In this review, we present melanoma-associated alterations of GPCRs and their downstream signaling and discuss the various preclinical models used to evaluate new therapeutic approaches against GPCR activity in melanoma. Recent striking advances in our understanding of the structure, function, and regulation of GPCRs will undoubtedly broaden treatment options in melanoma in the future.


Author(s):  
Brian Maunze ◽  
Katherine Wood Bruckner ◽  
Nikhil Nilesh Desai ◽  
Christopher Chen ◽  
Fanghong Chen ◽  
...  

Pituitary adenylate cyclase activating polypeptide (PACAP) exerts pleiotropic effects on ventromedial nuclei (VMN) of the hypothalamus and its control of feeding and energy expenditure through the Type I PAC1 receptor. However, the endogenous role of PAC1R's in the VMN and the downstream signaling responsible for PACAP's effects on energy balance are unknown. Numerous studies have revealed that PAC1Rs are coupled to both Gas/ adenylate cyclase/protein kinase A (Gas/AC/PKA) and Gaq/phospholipase C/protein kinase C (Gaq/PLC/PKC), while also undergoing trafficking following stimulation. To determine the endogenous role PAC1R's and downstream signaling that may explain PACAP's pleiotropic effects, we used RNA interference to knockdown VMN PAC1Rs and pharmacologically inhibited PKA, PKC and PAC1R trafficking. Knocking down PAC1Rs increased meal sizes, reduced total number of meals, and induced body weight gain. Inhibition of either PKA or PKC alone in awake male Sprague Dawley rats, attenuated PACAP's hypophagic and anorectic effects during the dark phase. However, PKA or PKC inhibition potentiated PACAP's thermogenic effects during the light phase. Analysis of locomotor activity revealed that PKA inhibition augmented PACAP's locomotor effects, however, PKC inhibition had no effect. Finally, PACAP infusion in the VMN induces surface PAC1R trafficking into the cytosol which was blocked by endocytosis inhibitors. Subsequently, inhibition of PAC1R trafficking into the cytosol attenuated PACAP-induced hypophagia. These results revealed that endogenous PAC1Rs uniquely engage PKA, PKC and receptor trafficking to mediate PACAP's pleiotropic effects in VMN control of feeding and metabolism.


2022 ◽  
Author(s):  
Kelly A Karl ◽  
Kalina Hristova ◽  
Pavel Krejci ◽  
Nuala Del Piccolo

FGFR1 signals differently in response to the FGF ligands FGF4, FGF8 and FGF9, but the mechanism behind the differential ligand recognition is poorly understood. Here, we use biophysical tools to quantify multiple aspects of FGFR1 signaling in response to the three FGFs: potency, efficacy, ligand-induced oligomerization and downregulation, and conformation of the active FGFR1 dimers. We show that FGF4, FGF8, and FGF9 are biased ligands, and that bias can explain differences in FGF8 and FGF9-mediated cellular responses. Our data suggest that ligand bias arises due to structural differences in the ligand-bound FGFR1 dimers, which impact the interactions of the FGFR1 transmembrane helices, leading to differential recruitment and activation of the downstream signaling adaptor FRS2. This study expands the mechanistic understanding of FGF signaling during development and brings the poorly understood concept of receptor tyrosine kinase ligand bias into the spotlight.


2022 ◽  
Vol 21 (1) ◽  
Author(s):  
Yun Ling ◽  
Gehao Liang ◽  
Qun Lin ◽  
Xiaolin Fang ◽  
Qing Luo ◽  
...  

Abstract Background Approximate 25% HER2-positive (HER2+) breast cancer (BC) patients treated with trastuzumab recurred rapidly. However, the mechanisms underlying trastuzumab resistance remained largely unclear. Methods Trastuzumab-resistant associated circRNAs were identified by circRNAs high-throughput screen and qRT-PCR in HER2+ breast cancer tissues with different trastuzumab response. The biological roles of trastuzumab-resistant associated circRNAs were detected by cell vitality assay, colony formation assay, Edu assay, patient-derived xenograft (PDX) models and orthotopic animal models. For mechanisms research, the co-immunoprecipitation, Western blot, immunofluorescence, and pull down assays confirmed the relevant mechanisms of circRNA and binding proteins. Results We identified a circRNA circCDYL2, which was overexpressed in trastuzumab-resistant patients, which conferred trastuzumab resistance in breast cancer cells in vitro and in vivo. Mechanically, circCDYL2 stabilized GRB7 by preventing its ubiquitination degradation and enhanced its interaction with FAK, which thus sustained the activities of downstream AKT and ERK1/2. Trastuzumab-resistance of HER2+ BC cells with high circCDYL2 could be reversed by FAK or GRB7 inhibitor. Clinically, HER2+ BC patients with high levels of circCDYL2 developed rapid recurrence and had shorter disease-free survival (DFS) and overall survival (OS) following anti-HER2 therapy compared to those with low circCDYL2. Conclusions circCDYL2-GRB7-FAK complex plays a critical role in maintaining HER2 signaling, which contributes to trastuzumab resistance and circCDYL2 is a potential biomarker for trastuzumab-resistance in HER2+ BC patients.


2022 ◽  
Vol 67 (4) ◽  
pp. 163-169
Author(s):  
Yin Wu ◽  
Darong Yang ◽  
Guo-Yun Chen

Siglecs, membrane-bound lectins of the sialic acid-binding immunoglobulin superfamily, inhibit immune responses by recruiting tyrosine phosphatases (e.g., SHP-1 and SHP-2) through their cytoplasmic immunoreceptor tyrosine-based inhibition motif (ITIM) domain. The role of Siglecs in infection has been extensively studied, but downstream signaling through the ITIM domain remains unclear. Here, we used a GST pull-down assay to identify additional proteins associated with the ITIM domain during bacterial infection. Gdi2 bound to ITIM under normal homeostasis, but Rab1a was recruited to ITIM during bacterial infection. Western blot analysis confirmed the presence of SHP-1 and SHP-2 in eluted ITIM-associated proteins under normal homeostasis. We confirmed the association of ITIM with Gdi2 or Rab1a by transfection of corresponding expression vectors in 293T cells followed by immunoprecipitation-western blot assay. Thus, ITIM’s role in the inhibition of the immune response during bacterial infection may be regulated by interaction with Gdi2 and Rab1a in addition to SHP-1 and SHP-2.


2022 ◽  
Vol 12 (1) ◽  
pp. 1-9
Author(s):  
Li Chen ◽  
Tao Tang ◽  
Xin Zheng ◽  
Ying Xiong

To explore effects of dexmedetomidine (Dex) on cognitive function and hippocampal neuronal apoptosis in rats anesthetized with sevoflurane (Sevo), and regulation of brain-derived neurotrophic factor (BDNF) and its downstream signaling. 30 Sprague-Dawley (SD) rats were randomly divided into control group inhaled 29% concentration oxygen), Sevo group (2 L/min oxygen flow +1.5% Sevo), Dex+Sevo group (after injection of 20 μg/kg Dex, treated with 2L/min oxygen flow+1.5% Sevo). Haematoxylin and eosin (HE) staining and Nissl’s staining were adopted to detect morphological and functional changes in hippocampus of rats. Apoptosis was detected by immunofluorescence, BDNF expression was detected by immunohistochemistry. Reverse transcription PCR (RT-PCR) was conducted to detect mRNA expression of key proteins in downstream signaling of BDNF. The results showed that Sevo induced apoptosis of hippocampus neurons, while Dex improved Sevo induced apoptosis. In contrast to the control, the positive expression of BDNF in hippocampus of Sevo group was notably decreased (P < 0.05), and that of Dex+Sevo group was notably higher in contrast to Sevo group (P < 0.05). Signaling pathways of MAPK, PI3K-Akt, and Ras were predicted by String software as the downstream pathways of BDNF. RT-PCR results showed that these 3 signaling pathways were involved in Dex improving Sevo-induced cognitive impairment and hippocampal neuron apoptosis. In conclusion, Dex could improve cognitive dysfunction and hippocampal neuron apoptosis in rats induced by Sevo, and the mechanism was related to upregulation of BDNF expression and activation of pathways of MAPK, PI3K-Akt, and Ras.


Sign in / Sign up

Export Citation Format

Share Document