Abstract P6-16-12: Graded prognostic assessment for triple negative breast cancer brain metastases

Author(s):  
Ming Chi ◽  
Vyshak Alva Venur ◽  
Jame Abraham ◽  
Thomas G Budd ◽  
Paul Elson ◽  
...  
2019 ◽  
Vol 1 (Supplement_1) ◽  
pp. i1-i2
Author(s):  
Shenqi Zhang ◽  
Christopher May ◽  
Anupama Shirali ◽  
Valentina Dubljevic ◽  
James Campbell ◽  
...  

Abstract An unusual lupus anti-DNA autoantibody, 3E10, has potential to be used against triple-negative breast cancer (TNBC) brain metastases. 3E10 penetrates live cell nuclei, inhibits DNA repair, and is selectively toxic to cancer cells with the PTEN and/or DNA-damage response (DDR)-deficiencies that are associated with brain metastases in TNBC. The ENT2 nucleoside transporter that 3E10 uses to cross cell membranes is highly expressed in tumors and in brain endothelial cells (BECs) at the blood-brain barrier (BBB), and 3E10 has previously delivered cargo proteins to ischemic brain in a rat stroke model. We have re-engineered 3E10 into an optimized fragment, called Deoxymab-1 (PAT-DX1), that has increased effect on PTEN/DDR-deficient tumor cells. In the present study we tested the ability of PAT-DX1 to cross the BBB and improve outcomes in a mouse model of TNBC brain metastases. PAT-DX1 crossed from apical to basolateral chambers in an hCMEC/D3 Transwell filter model of the BBB, and penetrated the nuclei of and was toxic to the brain-seeking 231-BR subclone of MDA-MB-231 TNBC cells, which harbors a loss of PTEN compared to parental cells. Brain metastases were generated in nude mice by intracardiac injection of 1.75x105 231-BR cells engineered for expression of luciferase, as confirmed by IVIS one week after injection. Mice with brain metastases were treated by tail vein injection of control (PBS, n=7) or DX1 (20 mg/kg, n=7) 3x/week for 4 weeks. Mice were observed for behavior and weights, and brain radiance efficiency was monitored by weekly IVIS to track metastatic tumor growth. PAT-DX1 significantly suppressed growth of brain metastases based on absolute and relative radiance efficiencies in the brain, increased the median survival of the mice from 38 to 52 days (P< 0.02), and was well tolerated. These results provide proof of concept for use of a re-engineered autoantibody against brain metastases.


CNS Oncology ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 25-34 ◽  
Author(s):  
Cheng-Hung Tai ◽  
Cheng-Chia Wu ◽  
Mark E Hwang ◽  
Anurag Saraf ◽  
Christopher Grubb ◽  
...  

2021 ◽  
Vol 32 ◽  
pp. S486-S487
Author(s):  
G. Griguolo ◽  
A. Tosi ◽  
M.V. Dieci ◽  
S. Fineberg ◽  
A. Ventura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document