Abstract PD3-01: CDK7: A marker of poor prognosis and tractable therapeutic target in triple-negative breast cancer

Author(s):  
WM Gallagher ◽  
B Li ◽  
T Ni Chonghaile ◽  
Y Fan ◽  
R Klinger ◽  
...  
2016 ◽  
Author(s):  
Bo Li ◽  
Triona Ni Chonghaile ◽  
Yue Fan ◽  
Rut Klinger ◽  
Aisling E. O'Connor ◽  
...  

2015 ◽  
Vol 151 (3) ◽  
pp. 541-553 ◽  
Author(s):  
Shaham Beg ◽  
Abdul K. Siraj ◽  
Sarita Prabhakaran ◽  
Zeenath Jehan ◽  
Dahish Ajarim ◽  
...  

Cancers ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 525 ◽  
Author(s):  
Alexander Ring ◽  
Cu Nguyen ◽  
Goar Smbatyan ◽  
Debu Tripathy ◽  
Min Yu ◽  
...  

Background: Triple negative breast cancers (TNBCs) are an aggressive BC subtype, characterized by high rates of drug resistance and a high proportion of cancer stem cells (CSC). CSCs are thought to be responsible for tumor initiation and drug resistance. cAMP-response element-binding (CREB) binding protein (CREBBP or CBP) has been implicated in CSC biology and may provide a novel therapeutic target in TNBC. Methods: RNA Seq pre- and post treatment with the CBP-binding small molecule ICG-001 was used to characterize CBP-driven gene expression in TNBC cells. In vitro and in vivo TNBC models were used to determine the therapeutic effect of CBP inhibition via ICG-001. Tissue microarrays (TMAs) were used to investigate the potential of CBP and associated proteins as biomarkers in TNBC. Results: The CBP/ß-catenin/FOXM1 transcriptional complex drives gene expression in TNBC and is associated with increased CSC numbers, drug resistance and poor survival outcome. Targeting of CBP/β-catenin/FOXM1 with ICG-001 eliminated CSCs and sensitized TNBC tumors to chemotherapy. Immunohistochemistry of TMAs demonstrated a significant correlation between FOXM1 expression and TNBC subtype. Conclusion: CBP/β-catenin/FOXM1 transcriptional activity plays an important role in TNBC drug resistance and CSC phenotype. CBP/β-catenin/FOXM1 provides a molecular target for precision therapy in triple negative breast cancer and could form a rationale for potential clinical trials.


Medicina ◽  
2021 ◽  
Vol 57 (8) ◽  
pp. 837
Author(s):  
So-Woon Kim ◽  
Jinah Chu ◽  
Sung-Im Do ◽  
Kiyong Na

Background and Objectives: Kidney and brain protein (KIBRA) is a protein encoded by the WW and C2 domain containing 1 (WWC1) gene and is involved in the Hippo signaling pathway. Recent studies have revealed the prognostic value of KIBRA expression; however, its role in breast cancer remains unclear. The aim of this study was to examine KIBRA expression in relation to the clinical and pathological characteristics of patients with breast cancer and to disease outcomes. Materials and Methods: We analyzed the expression of KIBRA and its correlation with event-free survival (EFS) outcomes in resected samples from 486 patients with breast cancer. Results: KIBRA expression was significantly different among the molecular subgroups (low KIBRA expression: luminal A, 46.7% versus 50.0%, p = 0.641; luminal B, 32.7% versus 71.7%, p < 0.001; human epidermal growth factor receptor 2 (HER2)-enriched, 64.9% versus 45.5%. p = 0.001; triple-negative, 73.6% versus 43.8%, p < 0.001). Low KIBRA expression was also associated with high nuclear grade (60.4% versus 37.8%, p < 0.001), high histologic grade (58.7% versus 37.0%, p < 0.001), and estrogen receptor (ER) negativity (54.2% versus 23.6%, p < 0.001). Low KIBRA expression was significantly associated with poor EFS (p = 0.041; hazard ratio (HR) 1.658; 95% confidence interval (CI), 1.015–2.709). Low KIBRA expression was an independent indicator of poor prognosis (p = 0.001; HR = 3.952; 95% CI = 1.542–10.133) in triple-negative breast cancer (TNBC). Conclusion: Low KIBRA expression was associated with higher histological grade, ER negativity and poor EFS of breast cancer. In particular, our data highlight KIBRA expression status as a potential prognostic marker for TNBC.


2013 ◽  
Vol 30 (3) ◽  
Author(s):  
Kejin Wu ◽  
Shuo Huang ◽  
Mingjie Zhu ◽  
Yunshu Lu ◽  
Jian Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document