scholarly journals Altered Nuclear Export Signal Recognition as a Driver of Oncogenesis

2019 ◽  
Vol 9 (10) ◽  
pp. 1452-1467 ◽  
Author(s):  
Justin Taylor ◽  
Maria Sendino ◽  
Alexander N. Gorelick ◽  
Alessandro Pastore ◽  
Matthew T. Chang ◽  
...  
Nature ◽  
2009 ◽  
Vol 458 (7242) ◽  
pp. 1136-1141 ◽  
Author(s):  
Xiuhua Dong ◽  
Anindita Biswas ◽  
Katherine E. Süel ◽  
Laurie K. Jackson ◽  
Rita Martinez ◽  
...  

2001 ◽  
Vol 153 (4) ◽  
pp. 745-762 ◽  
Author(s):  
Helge Grosshans ◽  
Karina Deinert ◽  
Ed Hurt ◽  
George Simos

The signal recognition particle (SRP) targets nascent secretory proteins to the ER, but how and where the SRP assembles is largely unknown. Here we analyze the biogenesis of yeast SRP, which consists of an RNA molecule (scR1) and six proteins, by localizing all its components. Although scR1 is cytoplasmic in wild-type cells, nuclear localization was observed in cells lacking any one of the four SRP “core proteins” Srp14p, Srp21p, Srp68p, or Srp72p. Consistently, a major nucleolar pool was detected for these proteins. Sec65p, on the other hand, was found in both the nucleoplasm and the nucleolus, whereas Srp54p was predominantly cytoplasmic. Import of the core proteins into the nucleolus requires the ribosomal protein import receptors Pse1p and Kap123p/Yrb4p, which might, thus, constitute a nucleolar import pathway. Nuclear export of scR1 is mediated by the nuclear export signal receptor Xpo1p, is distinct from mRNA transport, and requires, as evidenced by the nucleolar accumulation of scR1 in a dis3/rrp44 exosome component mutant, an intact scR1 3′ end. A subset of nucleoporins, including Nsp1p and Nup159p (Rat7p), are also necessary for efficient translocation of scR1 from the nucleus to the cytoplasm. We propose that assembly of the SRP requires import of all SRP core proteins into the nucleolus, where they assemble into a pre-SRP with scR1. This particle can then be targeted to the nuclear pores and is subsequently exported to the cytoplasm in an Xpo1p-dependent way.


Nature ◽  
2009 ◽  
Vol 461 (7263) ◽  
pp. 550-550
Author(s):  
Xiuhua Dong ◽  
Anindita Biswas ◽  
Katherine E. Süel ◽  
Laurie K. Jackson ◽  
Rita Martinez ◽  
...  

2011 ◽  
Vol 411 (5) ◽  
pp. 1114-1127 ◽  
Author(s):  
Mercedes Spínola-Amilibia ◽  
José Rivera ◽  
Miguel Ortiz-Lombardía ◽  
Antonio Romero ◽  
José L. Neira ◽  
...  

PLoS ONE ◽  
2014 ◽  
Vol 9 (3) ◽  
pp. e91953 ◽  
Author(s):  
Yawei Shi ◽  
Lei Zhang ◽  
Ting Yang

Virology ◽  
2001 ◽  
Vol 288 (1) ◽  
pp. 119-128 ◽  
Author(s):  
Lin Chen ◽  
Gangling Liao ◽  
Masahiro Fujimuro ◽  
O.John Semmes ◽  
S.Diane Hayward

2021 ◽  
Author(s):  
Xiaohui Xu ◽  
Han Wang ◽  
Jiqin Liu ◽  
Shuying Han ◽  
Miaomiao Lin ◽  
...  

Abstract Background: OsWRKY62 and OsWRKY76, two close members of WRKY transcription factors, function together as transcriptional repressors. OsWRKY62 is predominantly localized in the cytosol. What are the regulatory factors for OsWRKY62 nuclear translocation?Results: In this study, we characterized they interacted with rice importin, OsIMα1a and OsIMα1b, for nuclear translocation. Chimeric OsWRKY62.1-GFP, which is predominantly localized in the cytoplasm, was translocated to the nucleus of Nicotiana benthamiana leaf cells in the presence of OsIMα1a or OsIMαDIBB1a lacking the auto-inhibitory importin β-binding domain. OsIMαDIBB1a interacted with the WRKY domain of OsWRKY62.1, which has specific bipartite positively charged concatenated amino acids functioning as a nuclear localization signal. Similarly, we found that OsIMαDIBB1a interacted with the AvrPib effector of rice blast fungus Magnaporthe oryzae, which contains a scattered distribution of positively charged amino acids. Furthermore, we identified a nuclear export signal in OsWRKY62.1 that inhibited nuclear transportation. Overexpression of OsIMα1a or OsIMα1b enhanced resistance to M. oryzae, whereas knockout mutants decreased resistance to the pathogen. However, overexpressing both OsIMα1a and OsWRKY62.1 were slightly more susceptible to M. oryzae than OsWRKY62.1 alone. Ectopic overexpression of OsWRKY62.1 with an extra nuclear export signal compromised the enhanced susceptibility of OsWRKY62.1 to M. oryzae.Conclusion: These results indicated that OsWRKY62 localization is a consequence of competition binding between rice importins and exportins. OsWRKY62, OsWRKY76, and AvrPib effector translocate to nucleus in association with importin α1s through new types of nuclear localization signals for negatively regulating defense responses.


eLife ◽  
2015 ◽  
Vol 4 ◽  
Author(s):  
Ho Yee Joyce Fung ◽  
Szu-Chin Fu ◽  
Chad A Brautigam ◽  
Yuh Min Chook

The Chromosome Region of Maintenance 1 (CRM1) protein mediates nuclear export of hundreds of proteins through recognition of their nuclear export signals (NESs), which are highly variable in sequence and structure. The plasticity of the CRM1-NES interaction is not well understood, as there are many NES sequences that seem incompatible with structures of the NES-bound CRM1 groove. Crystal structures of CRM1 bound to two different NESs with unusual sequences showed the NES peptides binding the CRM1 groove in the opposite orientation (minus) to that of previously studied NESs (plus). Comparison of minus and plus NESs identified structural and sequence determinants for NES orientation. The binding of NESs to CRM1 in both orientations results in a large expansion in NES consensus patterns and therefore a corresponding expansion of potential NESs in the proteome.


EMBO Reports ◽  
2000 ◽  
Vol 1 (2) ◽  
pp. 176-182 ◽  
Author(s):  
Mina Watanabe ◽  
Norihisa Masuyama ◽  
Makoto Fukuda ◽  
Eisuke Nishida

Sign in / Sign up

Export Citation Format

Share Document