Cellular Signaling Mechanisms for Stimulation of Growth Hormone Secretion and Growth Hormone Primary Transcripts by Immunosuppressant Agents, FK506 and Cyclosporin A, in Cultured Rat Pituitary Cells

1998 ◽  
Vol 5 (6) ◽  
pp. 309-317 ◽  
Author(s):  
Hidemi Ohye ◽  
Makoto Sato ◽  
Koji Murao ◽  
Shuji Matsubara ◽  
Masaaki Tokuda ◽  
...  
2001 ◽  
Vol 281 (2) ◽  
pp. E269-E274 ◽  
Author(s):  
Ikue Hata ◽  
Yosuke Shigematsu ◽  
Yusei Ohshima ◽  
Hirokazu Tsukahara ◽  
Kazuo Fujisawa ◽  
...  

We report here an examination of the effect of thioredoxin (TRX) on the secretion of growth hormone (GH) from rat anterior pituitary cells in vitro. Treatment of rat pituitary cells with growth hormone-releasing factor (GRF), but not GH, led to a significant increase in intracellular TRX protein levels. GRF, recombinant human TRX (rhTRX), and a combination thereof were all shown to induce immediate GH secretion from pituitary cells, as evidenced by perifusion experiments. RhTRX, but not other reducing agents such as β-mercaptoethanol and N-acetyl-l-cysteine, augmented GRF-stimulated and -unstimulated GH secretion from rat pituitary cells in a dose-dependent manner. RhTRX did not significantly affect the GH mRNA expression of pituitary cells stimulated in the presence or absence of GRF. In addition, rhTRX-augmented GH secretion was not significantly affected by the presence of cycloheximide. Collectively, these findings suggest that TRX is induced by stimulation with GRF and plays a regulatory role in GH secretion from rat anterior pituitary cells by enhancing the secretion of stored GH, rather than by the synthesis of GH.


2018 ◽  
Vol 237 (2) ◽  
pp. 165-173 ◽  
Author(s):  
J T Smith ◽  
A Roseweir ◽  
M Millar ◽  
I J Clarke ◽  
R P Millar

Kisspeptin signalling is indispensable for fertility, stimulating gonadotropin-releasing hormone (GnRH) secretion and mediating gonadal steroid feedback on GnRH neurons. Moreover, kisspeptin neurons have been implicated in other non-reproductive neuroendocrine roles. Kisspeptin appears to also regulate growth hormone secretion but much of the data appear contradictory. We sought to clarify a potential role of kisspeptin in growth hormone (GH) regulation by examining the effect of kisspeptin antagonists on GH secretion in ewes under various physiological conditions. Our data show clear and robust increases in GH secretion following lateral ventricle or third ventricle infusion of kisspeptin antagonists p-234 and p-271 in either ovariectomized or anestrous ewes. Central infusion of kisspeptin-10 had no effect on GH secretion. To determine the level at which kisspeptin may influence GH secretion, we examined expression of the cognate kisspeptin receptor, GPR54, in pituitary cells and showed by immunocytochemistry that the majority of somatotropes express GPR54 while expression was largely negative in other pituitary cells. Overall, we have demonstrated that blocking kisspeptin signalling by antagonists stimulates GH secretion in ewes and that this is likely mediated by inhibiting endogenous kisspeptin activation of GPR54 expressed on somatotropes. The findings suggest that endogenous kisspeptin inhibits GH secretion through GPR54 expressed on somatotropes.


Sign in / Sign up

Export Citation Format

Share Document