Mechanisms of neuronal cell death in Huntington’s disease

2003 ◽  
Vol 100 (1-4) ◽  
pp. 287-295 ◽  
Author(s):  
A. Sawa ◽  
T. Tomoda ◽  
B.-I. Bae
2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Neelima Mantha ◽  
Nandita G. Das ◽  
Sudip K. Das

Huntington’s disease is a genetically inherited neurodegenerative disease that is characterized by neuronal cell death in the brain. Molecular biology techniques to detect and quantify huntingtin protein in biological samples involve fluorescence imaging, western blotting, and PCR. Modified cell lines are widely used as models for Huntington’s disease for preclinical screening of drugs to study their ability to suppress the expression of huntingtin. Although worm and fly species have been experimented on as models for Huntington’s disease, the most successful animal models have been reported to be primates. This review critically analyses the molecular biology techniques for detection and quantitation of huntingtin and evaluates the various animal species for use as models for Huntington’s disease.


2010 ◽  
Vol 1 (2) ◽  
Author(s):  
Jun Wang ◽  
Cathie Pfleger ◽  
Lauren Friedman ◽  
Roselle Vittorino ◽  
Wei Zhao ◽  
...  

AbstractHuntington’s disease (HD) is a progressive neurodegenerative disorder associated with selective neuronal cell death. Abnormal aggregation of huntingtin protein with polyQ expansion has been shown to be causally linked to HD. Grape seed polyphenolic extract (GSPE) is a natural compound that has previously been shown to interfere with aggregations of proteins involved in neurological disorders, such as amyloid beta peptides (Aβ) and Tau protein. In this study we found that GSPE treatment significantly inhibits polyQ aggregation in phaeochromocytoma (PC)-12 cell line containing an ecdysone-inducible protein comprising the first 17 amino acid of huntingtin plus 103 glutamines fused with enhanced GFP. In vivo feasibility studies using the Q93httexon1 drosophila model of HD, we extended our in vitro evidence and found that flies fed with GSPE had a significantly improved lifespan compared to the control flies. Using the R6/2 rodent model of HD, we found that oral administration of 100 mg/kg/day GSPE (equivalent to 500mg per day in human) significantly attenuated the motor skill decay as well as extended the lifespan in the R6/2 mice relative to vehicle-control mice. Collectively, our studies strongly suggest that GSPE might be able to modulate the onset and/or progression of HD.


Sign in / Sign up

Export Citation Format

Share Document