The Organization of Repetitive DNA in the Genomes of Amazonian Lizard Species in the Family Teiidae

2015 ◽  
Vol 147 (2-3) ◽  
pp. 161-168 ◽  
Author(s):  
Natalia D.M. Carvalho ◽  
Vanessa S.S. Pinheiro ◽  
Edson J. Carmo ◽  
Leonardo G. Goll ◽  
Carlos H. Schneider ◽  
...  

Repetitive DNA is the largest fraction of the eukaryote genome and comprises tandem and dispersed sequences. It presents variations in relation to its composition, number of copies, distribution, dynamics, and genome organization, and participates in the evolutionary diversification of different vertebrate species. Repetitive sequences are usually located in the heterochromatin of centromeric and telomeric regions of chromosomes, contributing to chromosomal structures. Therefore, the aim of this study was to physically map repetitive DNA sequences (5S rDNA, telomeric sequences, tropomyosin gene 1, and retroelements Rex1 and SINE) of mitotic chromosomes of Amazonian species of teiids (Ameiva ameiva, Cnemidophorus sp. 1, Kentropyx calcarata, Kentropyx pelviceps, and Tupinambis teguixin) to understand their genome organization and karyotype evolution. The mapping of repetitive sequences revealed a distinct pattern in Cnemidophorus sp. 1, whereas the other species showed all sequences interspersed in the heterochromatic region. Physical mapping of the tropomyosin 1 gene was performed for the first time in lizards and showed that in addition to being functional, this gene has a structural function similar to the mapped repetitive elements as it is located preferentially in centromeric regions and termini of chromosomes.

Genome ◽  
2011 ◽  
Vol 54 (9) ◽  
pp. 710-717 ◽  
Author(s):  
B. Kolano ◽  
B.W. Gardunia ◽  
M. Michalska ◽  
A. Bonifacio ◽  
D. Fairbanks ◽  
...  

The chromosomal organization of two novel repetitive DNA sequences isolated from the Chenopodium quinoa Willd. genome was analyzed across the genomes of selected Chenopodium species. Fluorescence in situ hybridization (FISH) analysis with the repetitive DNA clone 18–24J in the closely related allotetraploids C. quinoa and Chenopodium berlandieri Moq. (2n = 4x = 36) evidenced hybridization signals that were mainly present on 18 chromosomes; however, in the allohexaploid Chenopodium album L. (2n = 6x = 54), cross-hybridization was observed on all of the chromosomes. In situ hybridization with rRNA gene probes indicated that during the evolution of polyploidy, the chenopods lost some of their rDNA loci. Reprobing with rDNA indicated that in the subgenome labeled with 18–24J, one 35S rRNA locus and at least half of the 5S rDNA loci were present. A second analyzed sequence, 12–13P, localized exclusively in pericentromeric regions of each chromosome of C. quinoa and related species. The intensity of the FISH signals differed considerably among chromosomes. The pattern observed on C. quinoa chromosomes after FISH with 12–13P was very similar to GISH results, suggesting that the 12–13P sequence constitutes a major part of the repetitive DNA of C. quinoa.


Genome ◽  
2003 ◽  
Vol 46 (6) ◽  
pp. 1118-1124 ◽  
Author(s):  
Incoronata Galasso

Multiple-target fluorescence in situ hybridization (FISH) was applied on mitotic chromosomes of seven Lens taxa using two highly repetitive sequences (pLc30 and pLc7) isolated from the cultivated lentil and the multigene families for the 18S–5.8S–25S (pTa71) and 5S rRNA (pTa794) from wheat simultaneously as probes. The number and location of pLc30 and pLc7 sites on chromosomes varied markedly among the species, whereas the hybridization pattern of 5S rDNA and 18S–5.8S–25S rDNA was less variable. In general, each species showed a typical FISH karyotype and few differences were observed among accessions belonging to the same species, except for the accessions of Lens odemensis. The most similar FISH karyotype to the cultivated lentil is that of Lens culinaris subsp. orientalis, whereas Lens nigricans and Lens tomentosus are the two species that showed the most divergent FISH patterns compared with all taxa for number and location of pLc30 and 18S–5.8S–25S rDNA sites.Key words: chromosome identification, comparative FISH karyotype, wild Lens species, genomic relationships.


2015 ◽  
Vol 146 (2) ◽  
pp. 144-152 ◽  
Author(s):  
Duilio M.Z.A. Silva ◽  
Ricardo Utsunomia ◽  
José C. Pansonato-Alves ◽  
Cláudio Oliveira ◽  
Fausto Foresti

Astyanax is a genus of Characidae fishes currently composed of 155 valid species. Previous cytogenetic studies revealed high chromosomal diversification among them, and several studies have been performed using traditional cytogenetic techniques to investigate karyotypes and chromosomal locations of 18S and 5S rDNA genes. However, only a few studies are currently available about other repetitive sequences. Here, the chromosomal location of small nuclear RNA genes, identified as U1 and U2 snRNA clusters, was established and compared to the distribution of 5S rDNA and histone clusters in 5 Astyanax species (A. paranae, A. fasciatus, A. bockmanni, A. altiparanae, and A. jordani) using FISH. The cytogenetic mapping of U1 and U2 snRNA demonstrated a conserved pattern in the number of sites per genome independent of the location in Astyanax species. The location of the U1 snRNA gene was frequently associated with 5S rDNA sequences, indicating a possible interaction between the distinct repetitive DNA families. Finally, comparisons involving the location of U1 and U2 snRNA clusters in the chromosomes of Astyanax species revealed a very diverse pattern, suggesting that many rearrangements have occurred during the diversification process of this group.


Genome ◽  
1996 ◽  
Vol 39 (4) ◽  
pp. 811-817 ◽  
Author(s):  
Keith J. Edwards ◽  
Jacky Veuskens ◽  
Heather Rawles ◽  
Allan Daly ◽  
Jeffrey L. Bennetzen

We have isolated four repetitive DNA fragments from maize DNA. Only one of these sequences showed homology to sequences within the EMBL database, despite each having an estimated copy number of between 3 × 104 and 5 × 104 per haploid genome. Hybridization of the four repeats to maize mitotic chromosomes showed that the sequences are evenly dispersed throughout most, but not all, of the maize genome, whereas hybridization to yeast colonies containing random maize DNA fragments inserted into yeast artificial chromosomes (YACs) indicated that there was considerable clustering of the repeats at a local level. We have exploited the distribution of the repeats to produce repetitive sequence fingerprints of individual YAC clones. These fingerprints not only provide information about the occurrence and organization of the repetitive sequences within the maize genome, but they can also be used to determine the organization of overlapping maize YAC clones within a contiguous fragment (contigs). Key words : maize, repetitive DNA, YACs.


2019 ◽  
Vol 24 (2) ◽  
pp. 82
Author(s):  
Agus Budi Setiawan ◽  
Ari Wibowo ◽  
Chee How Teo ◽  
Shinji Kikuchi ◽  
Takato Koba

Repetitive DNA sequences are highly abundant in plant genomes and are favorable probes for chromosome identification in plants. However, it is difficult to conduct studies on the details of metaphase chromosome structures in plants with small chromosomes due to their highly condensed status. Therefore, identification of homologous chromosomes for karyotyping and analyzing chromosome structures is a challenging issue for cytogeneticists without specific probes and precise chromosome stages. In this study, five repetitive DNA probes, i.e., 5S and 45S ribosomal DNAs (rDNAs), melon centromeric sequence (Cmcent), cucumber subtelomeric sequence (Type I), and microsatellite (CT)10 repeats, were used to identify primary constrictions and homologous chromosomes for karyotyping. Four and two loci of 45S rDNA were respectively observed on metaphase and pachytene chromosomes of Abelia × grandiflora. Cmcent was detected on both primary constrictions of melon pachytene and metaphase chromosomes. Furthermore, one pair of 5S rDNA signals were hybridized on melon metaphase chromosomes. Eight and two loci of 45S and 5S rDNA were respectively detected on cucumber chromosomes. Type I and (CT)10 probes were specifically hybridized on subtelomeric and interstitial regions on the chromosomes, respectively. These results suggest that repetitive DNA sequences are versatile probes for chromosome identification in plants with small chromosomes, particularly for karyotyping analyses.


2020 ◽  
Vol 477 (2) ◽  
pp. 325-339 ◽  
Author(s):  
Vaclav Brazda ◽  
Miroslav Fojta ◽  
Richard P. Bowater

DNA is a fundamentally important molecule for all cellular organisms due to its biological role as the store of hereditary, genetic information. On the one hand, genomic DNA is very stable, both in chemical and biological contexts, and this assists its genetic functions. On the other hand, it is also a dynamic molecule, and constant changes in its structure and sequence drive many biological processes, including adaptation and evolution of organisms. DNA genomes contain significant amounts of repetitive sequences, which have divergent functions in the complex processes that involve DNA, including replication, recombination, repair, and transcription. Through their involvement in these processes, repetitive DNA sequences influence the genetic instability and evolution of DNA molecules and they are located non-randomly in all genomes. Mechanisms that influence such genetic instability have been studied in many organisms, including within human genomes where they are linked to various human diseases. Here, we review our understanding of short, simple DNA repeats across a diverse range of bacteria, comparing the prevalence of repetitive DNA sequences in different genomes. We describe the range of DNA structures that have been observed in such repeats, focusing on their propensity to form local, non-B-DNA structures. Finally, we discuss the biological significance of such unusual DNA structures and relate this to studies where the impacts of DNA metabolism on genetic stability are linked to human diseases. Overall, we show that simple DNA repeats in bacteria serve as excellent and tractable experimental models for biochemical studies of their cellular functions and influences.


Genome ◽  
1991 ◽  
Vol 34 (5) ◽  
pp. 790-798 ◽  
Author(s):  
H. Aswidinnoor ◽  
R. J. Nelson ◽  
J. F. Dallas ◽  
C. L. McIntyre ◽  
H. Leung ◽  
...  

The value of genome-specific repetitive DNA sequences for use as molecular markers in studying genome differentiation was investigated. Five repetitive DNA sequences from wild species of rice were cloned. Four of the clones, pOm1, pOm4, pOmA536, and pOmPB10, were isolated from Oryza minuta accession 101141 (BBCC genomes), and one clone, pOa237, was isolated from Oryza australiensis accession 100882 (EE genome). Southern blot hybridization to different rice genomes showed strong hybridization of all five clones to O. minuta genomic DNA and no cross hybridization to genomic DNA from Oryza sativa (AA genome). The pOm1 and pOmA536 sequences showed cross hybridization only to all of the wild rice species containing the C genome. However, the pOm4, pOmPB10, and pOa237 sequences showed cross hybridization to O. australiensis genomic DNA in addition to showing hybridization to the O. minuta genomic DNA.Key words: rice, genome-specific repetitive sequences, Oryza.


Genome ◽  
1995 ◽  
Vol 38 (6) ◽  
pp. 1061-1069 ◽  
Author(s):  
A. Cuadrado ◽  
N. Jouve ◽  
C. Ceoloni

The molecular characterization of heterochromatin in six lines of rye has been performed using fluorescence in situ hybridization (FISH). The highly repetitive rye DNA sequences pSc 119.2, pSc74, and pSc34, and the probes pTa71 and pSc794 containing the 25S–5.8S–18S rDNA (NOR) and the 5S rDNA multigene families, respectively, were used. This allowed the individual identification of all seven rye chromosomes and most chromosome arms in all lines. All varieties showed similar but not identical patterns. A standard in situ hybridization map was constructed following the nomenclature system recommended for C-bands. All FISH sites observed appeared to correspond well with C-band locations, but not all C-banding sites coincided with hybridization sites of the repetitive DNA probes used. Quantitative and qualitative differences between different varieties were found for in situ hybridization response at corresponding sites. Variation between plants and even between homologous chromosomes of the same plant was found in open-pollinated lines. In inbred lines, the in situ pattern of the homologues was practically identical and no variation between plants was detected. The observed quantitative and qualitative differences are consistent with a corresponding variation for C-bands detected both within and between cultivars.Key words: fluorescence in situ hybridization, repetitive DNA, rye, Secale cereale, polymorphism.


2015 ◽  
Vol 145 (3-4) ◽  
pp. 201-217 ◽  
Author(s):  
Michael Schmid ◽  
Claus Steinlein

Mitotic chromosomes of 16 species of the frog genus Xenopus were prepared from kidney and lung cell cultures. In the chromosomes of 7 species, high-resolution replication banding patterns could be induced by treating the cultures with 5-bromodeoxyuridine (BrdU) and deoxythymidine (dT) in succession, and in 6 of these species the BrdU/dT-banded chromosomes could be arranged into karyotypes. In the 3 species of the clade with 2n = 20 and 4n = 40 chromosomes (X. tropicalis, X. epitropicalis, X. new tetraploid 1), as well as in the 3 species with 4n = 36 chromosomes (X. laevis, X. borealis, X. muelleri), the BrdU/dT-banded karyotypes show a high degree of homoeology, though differences were detected between these groups. Translocations, inversions, insertions or sex-specific replication bands were not observed. Minor replication asynchronies found between chromosomes probably involve heterochromatic regions. BrdU/dT replication banding of Xenopus chromosomes provides the landmarks necessary for the exact physical mapping of genes and repetitive sequences. FISH with an X. laevis 5S rDNA probe detected multiple hybridization sites at or near the long-arm telomeric regions in most chromosomes of X. laevis and X. borealis, whereas in X. muelleri, the 5S rDNA sequences are located exclusively at the long-arm telomeres of a single chromosome pair. Staining with the AT base pair-specific fluorochrome quinacrine mustard revealed brightly fluorescing heterochromatic regions in the majority of X. borealis chromosomes which are absent in other Xenopus species.


Sign in / Sign up

Export Citation Format

Share Document