maize genome
Recently Published Documents


TOTAL DOCUMENTS

196
(FIVE YEARS 43)

H-INDEX

45
(FIVE YEARS 5)

2021 ◽  
Vol 22 (23) ◽  
pp. 13045
Author(s):  
Yin Tang ◽  
Jingfei Guo ◽  
Tiantao Zhang ◽  
Shuxiong Bai ◽  
Kanglai He ◽  
...  

WRKY transcription factors comprise one of the largest gene families and serve as key regulators of plant defenses against herbivore attack. However, studies related to the roles of WRKY genes in response to herbivory are limited in maize. In this study, a total of 128 putative maize WRKY genes (ZmWRKYs) were identified from the new maize genome (v4). These genes were divided into seven subgroups (groups I, IIa–e, and III) based on phylogenomic analysis, with distinct motif compositions in each subgroup. Syntenic analysis revealed that 72 (56.3%) of the genes were derived from either segmental or tandem duplication events (69 and 3, respectively), suggesting a pivotal role of segmental duplication in the expansion of the ZmWRKY family. Importantly, transcriptional regulation prediction showed that six key WRKY genes contribute to four major defense-related pathways: L-phenylalanine biosynthesis II and flavonoid, benzoxazinoid, and jasmonic acid (JA) biosynthesis. These key WRKY genes were strongly induced in commercial maize (Jingke968) infested with the Asian corn borer, Ostrinia furnacalis, for 0, 2, 4, 12 and 24 h in the field, and their expression levels were highly correlated with predicted target genes, suggesting that these genes have important functions in the response to O. furnacalis. Our results provide a comprehensive understanding of the WRKY gene family based on the new assembly of the maize genome and lay the foundation for further studies into functional characteristics of ZmWRKY genes in commercial maize defenses against O. furnacalis in the field.


Agronomy ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 2335
Author(s):  
Saqlain Haider ◽  
Shazia Rehman ◽  
Yumna Ahmad ◽  
Ali Raza ◽  
Javaria Tabassum ◽  
...  

Heat shock transcription factors (HSFs) regulate many environmental stress responses and biological processes in plants. Maize (Zea mays L.) is a major cash crop that is grown worldwide. However, the growth and yield of maize are affected by several adverse environmental stresses. Therefore, investigating the factors that regulate maize growth and development and resistance to abiotic stress is an essential task for developing stress-resilient maize varieties. Thus, a comprehensive genome-wide identification analysis was performed to identify HSFs genes in the maize genome. The current study identified 25 ZmHSFs, randomly distributed throughout the maize genome. Phylogenetic analysis revealed that ZmHSFs are divided into three classes and 13 sub-classes. Gene structure and protein motif analysis supported the results obtained through the phylogenetic analysis. Segmental duplication is shown to be responsible for the expansion of ZmHSFs. Most of the ZmHSFs are localized inside the nucleus, and the ZmHSFs which belong to the same group show similar physio-chemical properties. Previously reported and publicly available RNA-seq analysis revealed a major role of class A HSFs including ZmHSFA-1a and ZmHSFA-2a in all the maize growth stages, i.e., seed, vegetative, and reproductive development. Under abiotic stress conditions (heat, drought, cold, UV, and salinity), members of class A and B ZmHSFs are induced. Gene ontology and protein–protein interaction analysis indicated a major role of ZmHSFs in resistance to environmental stress and regulation of primary metabolism. To summarize, this study provides novel insights for functional studies on the ZmHSFs in maize breeding programs.


2021 ◽  
Author(s):  
Michael A Meier ◽  
Gen Xu ◽  
Martha G Lopez-Guerrero ◽  
Guangyong Li ◽  
Christine Smith ◽  
...  

The root-associated microbiome (rhizobiome) plays a non-negligible role in determining plant health, stress tolerance, and nutrient use efficiency. However, it remains unclear to what extent the composition of the rhizobiome is governed by intraspecific variation in host plant genetics in the field and the degree to which host plant selection can reshape the composition of the rhizobiome. Here we quantify the rhizosphere microbial communities associated with a replicated diversity panel of 230 maize (Zea mays L.) genotypes grown in agronomically relevant conditions under high N (+N) and low N (-N) treatments. We show that the abundance of many root-associated microbes within a functional core microbial community of 150 abundant and consistently reproducible microbial groups is explainable by natural genetic variation in the host plant, with a greater proportion of microbial variance attributable to plant genetic variation in low N conditions. Population genetic approaches identify signatures of purifying selection in the maize genome associated with the abundance of several groups of microbes in the maize rhizobiome. Genome-wide association studies conducted using rhizobiome phenotypes identified n = 467 microbe-associated plant loci (MAPLs) in the maize genome linked to variation in the abundance of n = 115 microbial groups in the maize rhizosphere. In 62/115 cases, which is more than expected by chance, the abundance of these same microbial groups was correlated with variation in plant vigor indicators derived from high throughput phenotyping of the same field experiment. This study provides insights into harnessing the full potential of root-associated microbial symbionts in maize production.


Author(s):  
Jibin Xiao ◽  
Xuanmin Xie ◽  
Chuang Li ◽  
Guozhen Xing ◽  
Kun Cheng ◽  
...  
Keyword(s):  

Genome ◽  
2021 ◽  
Author(s):  
Mark A.A. Minow ◽  
Lewis N Lukens ◽  
Vincenzo Rossi ◽  
Joseph Colasanti

Small RNAs (sRNAs) are epigenetic regulators of eukaryotic genes and transposable elements (TEs). Diverse sRNA expression patterns exist within a species, but how this diversity arises is not well understood. To provide a window into the dynamics of maize sRNA patterning, sRNA and mRNA transcriptomes were examined in two related Zea mays recombinant inbred lines (RILs) and their inbred parents. Analysis of these RILs revealed that most clusters of sRNA expression retain the parental sRNA expression level. However, expression states that differ from the parental allele were also observed, predominantly reflecting decreases in sRNA expression. When RIL sRNA expression differed from the parental allele, the new state was frequently similar between the two RILs, and similar to the expression state found at the allele in the other parent. Novel sRNA expression patterns, distinct from either parent, were rare. Additionally, examination of sRNA expression over TEs revealed one TE family, Gyma, that showed consistent enrichment for RIL sRNA expression differences compared to those found at parental alleles. These findings provide insights into how sRNA silencing might evolve over generations and suggest that further inquiry into the molecular nature of sRNA trans regulators is warranted.


Author(s):  
Saqlain Haider ◽  
Shazia Rehman ◽  
Yumna Ahmad ◽  
Ali Raza ◽  
Javaria Tabassum ◽  
...  

Heat shock transcription factors (HSFs) participate in regulating many environmental stress responses and biological processes in plants. Maize (Zea mays L.) is a major cash crop that is grown worldwide. However, the growth and yield of maize are affected by several adverse environmental inputs. Therefore, investigating the factors that regulate maize growth and development and resistance to abiotic stress is an essential task for developing stress-resilient maize varieties. Thus, a comprehensive genome-wide identification analysis was performed to identify HSFs in the maize genome. The current study identified 25 ZmHSFs, randomly distributed throughout the maize genome. Phylogenetic analysis revealed that ZmHSFs are divided into three classes and 13 sub-classes. Gene structure and protein motif analysis supported the results obtained through the phylogenetic analysis. Domain analysis showed the DNA-binding domain to be the most conserved region of ZmHSFs. Segmental duplication is shown to be responsible for the expansion of ZmHSFs. Most of the ZmHSFs are localized inside the nucleus, and the ZmHSFs which belong to the same group show similar physio-chemical properties. The 3D structures revealed comparable conserved ZmHSFs protein structures. RNA-seq analysis revealed a major role of class A HSFs including, ZmHSFA-1a and ZmHSFA-2a in all the maize growth stages, i.e., seed, vegetative, and reproductive development. Furthermore, ZmHSFs displayed an obvious spatiotemporal expression. Under abiotic stress conditions (heat, drought, cold, UV, and salinity), members of class A and B ZmHSFs are induced. Gene ontology (GO) annotation analysis indicated a major role of ZmHSFs in resistance to environmental stress and regulation of primary metabolism. Further, the protein-protein interaction analysis showed that ZmHSFs interact with several molecular chaperons and major stress-responsive proteins. To summarize, this study provides novel insights for functional studies on the ZmHSFs in maize breeding programs.


2021 ◽  
Vol 12 ◽  
Author(s):  
Cheng Peng ◽  
Yingting Mei ◽  
Lin Ding ◽  
Xiaofu Wang ◽  
Xiaoyun Chen ◽  
...  

The insertion position of the exogenous fragment sequence in a genetically modified organism (GMO) is important for the safety assessment and labeling of GMOs. SK12-5 is a newly developed transgenic maize line transformed with two trait genes [i.e., G10evo-5-enolpyrul-shikimate-3-phosphate synthase (EPSPS) and Cry1Ab/Cry2Aj] that was recently approved for commercial use in China. In this study, we tried to determine the insertion position of the exogenous fragment for SK12-5. The transgene–host left border and right border integration junctions were obtained from SK12-5 genomic DNA by using the thermal asymmetric interlaced polymerase chain reaction (TAIL-PCR) and next-generation Illumina sequencing technology. However, a Basic Local Alignment Search Tool (BLAST) analysis revealed that the flanking sequences in the maize genome are unspecific and that the insertion position is located in a repetitive sequence area in the maize genome. To locate the fine-scale insertion position in SK12-5, we combined the methods of genetic mapping and nanopore-based sequencing technology. From a classical bulked-segregant analysis (BSA), the insertion position in SK12-5 was mapped onto Bin9.03 of chromosome 9 between the simple sequence repeat (SSR) markers umc2337 and umc1743 (26,822,048–100,724,531 bp). The nanopore sequencing results uncovered 10 reads for which one end was mapped onto the vector and the other end was mapped onto the maize genome. These observations indicated that the exogenous T-DNA fragments were putatively integrated at the position from 82,329,568 to 82,379,296 bp of chromosome 9 in the transgenic maize SK12-5. This study is helpful for the safety assessment of the novel transgenic maize SK12-5 and shows that the combined method of genetic mapping and the nanopore-based sequencing technology will be a useful approach for identifying the insertion positions of transgenic sequences in other GM plants with relatively large and complex genomes.


Author(s):  
Yinjie Qiu ◽  
Christine H O’Connor ◽  
Rafael Della Coletta ◽  
Jonathan S Renk ◽  
Patrick J Monnahan ◽  
...  

Abstract Intact transposable elements (TEs) account for 65% of the maize genome and can impact gene function and regulation. Although TEs comprise the majority of the maize genome and affect important phenotypes, genome wide patterns of TE polymorphisms in maize have only been studied in a handful of maize genotypes, due to the challenging nature of assessing highly repetitive sequences. We implemented a method to use short read sequencing data from 509 diverse inbred lines to classify the presence/absence of 445,418 non-redundant TEs that were previously annotated in four genome assemblies including B73, Mo17, PH207, and W22. Different orders of TEs (i.e. LTRs, Helitrons, TIRs) had different frequency distributions within the population. LTRs with lower LTR similarity were generally more frequent in the population than LTRs with higher LTR similarity, though high frequency insertions with very high LTR similarity were observed. LTR similarity and frequency estimates of nested elements and the outer elements in which they insert revealed that most nesting events occurred very near the timing of the outer element insertion. TEs within genes were at higher frequency than those that were outside of genes and this is particularly true for those not inserted into introns. Many TE insertional polymorphisms observed in this population were tagged by SNP markers. However, there were also 19.9% of the TE polymorphisms that were not well tagged by SNPs (R2 < 0.5) that potentially represent information that has not been well captured in previous SNP based marker-trait association studies. This study provides a population scale genome-wide assessment of TE variation in maize, and provides valuable insight on variation in TEs in maize and factors that contribute to this variation.


2021 ◽  
Author(s):  
William Ricci

AbstractDelineating the functional space within genomes has been a long-standing goal shared among geneticists, molecular biologists, and genome scientists. The genome of Zea mays (maize) has served as a model for locating functional elements within the gene-distal intergenic space. A recent development has been the discovery and use of accessible chromatin as a proxy for functional regulatory elements. However, the idea has recently arisen that DNA methylation data could supplement the use of accessible chromatin data for homing in on regulatory regions. Here, I test the robustness of using DNA methylation as a proxy for functional space. I find that CHG methylation can be non-arbitrarily partitioned into hypo-methylated and hyper-methylated regions. Hypo-methylated CHG regions are stable across development and contain nearly all accessible chromatin. Note: changes that will be made in version 2: expand introduction; expand discussion; add additional analyses; expand methods; link to github scripts.


Sign in / Sign up

Export Citation Format

Share Document