scholarly journals Chaotic immune symbiotic organisms search for SVC installation in voltage security control

Author(s):  
Mohamad Khairuzzaman Mohamad Zamani ◽  
Ismail Musirin ◽  
Saiful Izwan Suliman ◽  
Muhammad Murtadha Othman

<span>Parallel with the urbanization of the world, energy demand in the world also increased. The increase in energy demand will require a power system to be operated near its stability limit. To mitigate the problem, Flexible Alternating Current Transmission System (FACTS) devices can be installed as a compensation scheme to improve voltage security in a power system. For an effective compensation, FACTS devices should be optimally allocated in a power system. Although optimization techniques can be implemented to optimally allocate these devices, problems have been reported which would affect the performance of the optimization techniques in terms of producing high quality solutions. This paper presents the implementation of Chaotic Immune Symbiotic Organisms Search for solving optimal Static VAr Compensator (SVC) allocation problem for voltage security control. The optimization is validated in IEEE 26-Bus Reliability Test System (RTS) realizes the capability of CISOS in solving the optimization problem. Comparative studies with respect to Particle Swarm Optimization (PSO) and Evolutionary Programming (EP) resulting in good agreement on the results and demonstrated superior performance of CISOS. Results of the study can be beneficial to power system community in terms of compensation planning prior to real world implementation.</span>

Author(s):  
Mohamad Khairuzzaman Mohamad Zamani ◽  
Ismail Musirin ◽  
Saiful Izwan Suliman ◽  
Tarek Bouktir

<p>Due to the ever-increasing energy demand, power system operators have attempted to cope with these demands while keeping the power system remain operable. Economic constraints have forced the power system operator to abandon their effort in expanding the power system. The increased load demand can cause the power system to suffer from voltage instability and voltage collapse, especially during contingency condition. Hence, a strategy is required to maintain the steady state operation of a power system. Various research has been conducted to tackle this problem. Therefore, this paper presents the implementation of Chaos Embedded Symbiotic Organisms Search technique to solve optimal FACTS device allocation problem in power transmission system. Various practical constraints are also considered in the optimisation process to emulate the real-life constraints in power system. The optimisation process is conducted on a 26-bus IEEE RTS has validated that the results obtained has not violated the power system stability. The results provided by the proposed optimisation technique has successfully improved the voltage profile and voltage security in the system. Comparative studies are also conducted involving Particle Swarm Optimization and Evolutionary Programming technique resulting good results agreement and superiority of the proposed technique. Results obtained from this study would be beneficial to the power system operators regarding optimisation in power system operation for the implementation in real power transmission network.</p>


2018 ◽  
Vol 54 (3A) ◽  
pp. 52
Author(s):  
Duong Thanh Long

Optimal Power Flow (OPF) problem is an optimization tool through which secure and economic operating conditions of power system is obtained. In recent years, Flexible AC Transmission System (FACTS) devices, have led to the development of controllers that provide controllability and flexibility for power transmission. Series FACTS devices such as Thyristor controlled series compensators (TCSC), with its ability to directly control the power flow can be very effective to power system security. Thus, integration TCSC in the OPF is one of important current problems and is a suitable method for better utilization of the existing system. This paper is applied Cuckoo Optimization Algorithm (COA) for the solution of the OPF problem of power system equipped with TCSC. The proposed approach has been examined and tested on the IEEE 30-bus system. The results presented in this paper demonstrate the potential of COA algorithm and show its effectiveness for solving the OPF problem with TCSC devices over the other evolutionary optimization techniques.


Author(s):  
Mohamad Khairuzzaman Mohamad Zamani ◽  
Ismail Musirin ◽  
Saiful Izwan Suliman

<p>Increasing demand experienced by electric utilities in many parts of the world involving developing country is a normal phenomenon. This can be due to the urbanization process of a system network, which may lead to possible voltage decay at the receiving buses if no proper offline study is conducted. Unplanned load increment can push the system to operate closes to its instability point. Various compensation schemes have been popularly invented and proposed in power system operation and planning. This would require offline studies, prior to real system implementation. This paper presents the implementation of Symbiotic Organisms Search (SOS) algorithm for solving optimal static VAr compensator (SVC) installation problem in power transmission systems. In this study, SOS was employed to perform voltage control study in a transmission system under several scenarios via the SVC installation scheme. This realizes the feasibility of SOS applications in addressing the compensating scheme for the voltage control study. Minimum and maximum bound of the voltage at all buses have been considered as the inequality constraints as one of the aspects. A validation process conducted on IEEE 26-Bus RTS realizes the feasibility of SOS in performing compensation scheme without violating system stability. Results obtained from the optimization process demonstrated that the proposed SOS optimization algorithm has successfully reduced the total voltage deviation index and improve the voltage profile in the test system. Comparative studies have been performed with respect to the established evolutionary programming (EP) and artificial immune system (AIS) algorithms, resulting in good agreement and has demonstrated its superiority. Results from this study could be beneficial to the power system community in the planning and operation departments in terms of giving offline information prior to real system implementation of the corresponding power system utility.</p>


2019 ◽  
Vol 9 (6) ◽  
pp. 4893-4900 ◽  
Author(s):  
N. E. Akpeke ◽  
C. M. Muriithi ◽  
C. Mwaniki

The increasing penetration of wind energy to the conventional power system due to the rapid growth of energy demand has led to the consideration of different wind turbine generator technologies. In fault conditions, the frequency of the power system decreases and eventually leads to speed differences between the grid and the interconnected wind generator. This can result to power system problems such as transient instability (TS). This paper focuses on enhancing the TS of a permanent magnet synchronous generator (PMSG)-based power system during 3ph fault conditions using FACTS devices. The power system considered is connected to a large wind farm which is based on PMSG. Critical clearing time (CCT) is used as an index to evaluate the transient state of the system. Under the study of an IEEE-14 bus system using PSAT as a simulation tool, the integrated CCT with PMSG-based wind turbine is improved with three independent FACTS devices. One of the synchronous generators in the test system has been replaced at random with the PMSG-based wind turbine which is meant to generate an equivalent power. Time domain simulations (TDSs) were carried out considering four study cases. Simulation results show that the (CCT) of the system with the FACTS devices is longer than the CCT without them, which is an indication of TS improvement.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4371 ◽  
Author(s):  
Oludamilare Bode Adewuyi ◽  
Mikaeel Ahmadi ◽  
Isaiah Opeyemi Olaniyi ◽  
Tomonobu Senjyu ◽  
Temitayo Olowu ◽  
...  

Modern utilities are forced to operate very close to their loadable limits (maximum capacity) due to geographical, economical and some technical reasons. The deregulation of the power industry, the competitive nature of modern electricity markets and the continuous quest for modernization of cities and hamlets all over the world has also led to fast increase in the load demand. The stability of power systems all over the world are threatened with recurrent occurrences of voltage stability issues. Hence, Inter-zonal energy transactions between willing supplier and buyers need to be done with adequate consideration for power system security. In this work, a voltage security-constrained optimal generator active and reactive power rescheduling is carried out using the IEEE 30 and IEEE 57 bus systems. The simultaneous maximization of available transfer capacity (ATC) and voltage stability margin (VSM), using the weighted sum approach, is the objective function. Credible optimal power flow and power system security constraints are considered. Three variants of particle swarm optimization in MATLAB® are used in this work for analyzing the results for objectivity. The technical and economic benefits of the optimal generator rescheduling on the system’s ATC, VSM, line losses, line flow and voltage profile are adequately analyzed.


Author(s):  
Mohamad Khairuzzaman Mohamad Zamani ◽  
Ismail Musirin ◽  
Sharifah Azma Syed Mustaffa ◽  
Saiful Izwan Suliman

2022 ◽  
Vol 13 (1) ◽  
pp. 0-0

The objective of image compression is to extract meaningful clusters in a given image. Significant groups are possible with absolute threshold values. 1-D histogram-based multilevel thresholding is computationally complex and reconstructed image visual quality comparatively low because of equal distribution of energy over the entire histogram plan. So, 2-D histogram-based multilevel thresholding is proposed in this paper by maximizing the Renyi entropy with a novel hybrid Genetic Algorithm, Particle Swarm Optimization and Symbiotic Organisms Search (hGAPSO-SOS), and the obtained results are compared with state of the art optimization techniques. Recent study reveals that PSNR fails in measuring the visual quality because of mismatch with the objective mean opinion scores (MOS). So, we incorporate a weighted PSNR (WPSNR) and visual PSNR (VPSNR). Experimental results examined on Magnetic Resonance images of brain, and results with 2-D histogram reveal that hGAPSO-SOS method can be efficiently and accurately used in multilevel thresholding problem.


Sign in / Sign up

Export Citation Format

Share Document