scholarly journals Enhancing load frequency control of multi-area multi-sources power system including conventional and renewable energy units with nonlinearities

Author(s):  
Mohamed Abdul Raouf Shafei ◽  
Ahmed Nabil Abd Alzaher ◽  
Doaa Khalil Ibrahim

The foremost aims the Load Frequency Control (LFC) is to maintain the frequency at nominal value and minimize the unscheduled tie line power flow between different control areas. The penetration of renewable energy sources into the grid is a recent challenge to the power system operators due to their different modelling rather than conventional units. In this paper, enhancing load frequency control of multi-area multi-sources power system including renewable units system with nonlinearities is proposed using a new application of proportional–integral–derivative controller with proportional controller in the inner feedback loop, which is called as PID-P controller. To investigate the performance of the proposed controller, a thermal with reheater, hydro, wind and diesel power generation units with physical constraints such as governor dead band, generation rate constraint, time delay and boiler dynamics are considered. The proposed controller parameters are optimized using different heuristic optimization techniques such: Linearized Biogeography-Based Optimization technique, Biogeography-Based Optimization technique and Genetic Algorithm. The ability of the system to handle the large variation in load conditions, time delay, participation factors, and system parameters has been verified comprehensively.

2020 ◽  
Vol 6 ◽  
pp. 1597-1603
Author(s):  
Lei Liu ◽  
Tomonobu Senjyu ◽  
Takeyoshi Kato ◽  
Abdul Motin Howlader ◽  
Paras Mandal ◽  
...  

2021 ◽  
Vol 850 (1) ◽  
pp. 012017
Author(s):  
J Shri Saranyaa ◽  
A Peer Fathima ◽  
Asutosh Mishra ◽  
Rushali Ghosh ◽  
Shalmali Das

Abstract Modern day scenario has an increasing power demand due to the growing development which indeed increases the load on the generation which might cause turbulence in the system and may bounce out of stability. The governor itself can’t handle such frequent load changes and adjust the generation amount to keep the frequency between the margins. This paper proposes an approach towards such predicament to incorporate an optimization method in order to ensure stability of the system despite the drastic changes in demand. Load frequency control is a control method for maintaining the frequency of the system during the change in demand. Use of controllers has proven to be effective in controlling the frequency deviations in the power systems and the response of the controller is further improved using optimization technique for better stability. The PID controller tuned by Particle Swarm Optimization is employed in multi-area system which reduces the time response by a considerable amount and the deviation settles much quicker despite the rapid load changes. The proposed controller is executed further for renewable energy sources connected to the individual areas and demonstration proves that the optimized controller is efficient enough in handling the frequency deviations when wind and solar with sunlight penetration is incorporated.


Mathematics ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 186
Author(s):  
Krishan Arora ◽  
Ashok Kumar ◽  
Vikram Kumar Kamboj ◽  
Deepak Prashar ◽  
Bhanu Shrestha ◽  
...  

There is an increasing concentration in the influences of nonconventional power sources on power system process and management, as the application of these sources upsurges worldwide. Renewable energy technologies are one of the best technologies for generating electrical power with zero fuel cost, a clean environment, and are available almost throughout the year. Some of the widespread renewable energy sources are tidal energy, geothermal energy, wind energy, and solar energy. Among many renewable energy sources, wind and solar energy sources are more popular because they are easy to install and operate. Due to their high flexibility, wind and solar power generation units are easily integrated with conventional power generation systems. Traditional generating units primarily use synchronous generators that enable them to ensure the process during significant transient errors. If massive wind generation is faltered due to error, it may harm the power system’s operation and lead to the load frequency control issue. This work proposes binary moth flame optimizer (MFO) variants to mitigate the frequency constraint issue. Two different binary variants are implemented for improving the performance of MFO for discrete optimization problems. The proposed model was evaluated and compared with existing algorithms in terms of standard testing benchmarks and showed improved results in terms of average and standard deviation.


2020 ◽  
Vol 53 (2) ◽  
pp. 12536-12541
Author(s):  
Li Jin ◽  
Xingchen Shang-Guan ◽  
Yong He ◽  
Chuan-Ke Zhang ◽  
Lin Jiang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document