Energy Power Plant in Electric Power Distribution Systems Equipping With Distance Protection

Author(s):  
Hui Hwang Goh ◽  
Sy yi Sim ◽  
Dahir Khere Diblawe ◽  
Mortar Mohamed Ali ◽  
Chin Wan Ling ◽  
...  

<p>This paper suggests the theory of distance protection criteria in power distribution systems for power plant generation. Multi-developed countries have energy power plants that placed in remote areas which are far from the grid line. Hence, they should be coupled to the low power transportation systems necessarily. While higher-rating relays are adopted to preserve feeders at power substations, fuses are merely obtainable outside on feeder channel. The safe system process, space protection is dispatched to save feeders. In this review, feeders with distance relays are equipped, together with over-current protection relays and fuses. Energy power plant having distance protection system is designed the implemented system was a 6-MW unit of compressed power energy reproduction. The sample feeder was shortened to be equal four-bus experiment feeder for transmitting resolution. The fault currents have chances adopted to form protecting regions of distance relays. Protection of the power line through the designed power plants for distance relaying can decrease problem in relay location because of the impedance-based location of the distance relay. </p>

2012 ◽  
Vol E95.B (6) ◽  
pp. 1990-1996
Author(s):  
Seiya ABE ◽  
Sihun YANG ◽  
Masahito SHOYAMA ◽  
Tamotsu NINOMIYA ◽  
Akira MATSUMOTO ◽  
...  

Mathematics ◽  
2018 ◽  
Vol 6 (9) ◽  
pp. 158
Author(s):  
Farzaneh Pourahmadi ◽  
Payman Dehghanian

Allocation of the power losses to distributed generators and consumers has been a challenging concern for decades in restructured power systems. This paper proposes a promising approach for loss allocation in power distribution systems based on a cooperative concept of game-theory, named Shapley Value allocation. The proposed solution is a generic approach, applicable to both radial and meshed distribution systems as well as those with high penetration of renewables and DG units. With several different methods for distribution system loss allocation, the suggested method has been shown to be a straight-forward and efficient criterion for performance comparisons. The suggested loss allocation approach is numerically investigated, the results of which are presented for two distribution systems and its performance is compared with those obtained by other methodologies.


Sign in / Sign up

Export Citation Format

Share Document