Epinephrine-mediated protein kinase C and Rap1b activation requires the co-stimulation of Gz-, Gq-, and Gi-coupled receptors

2011 ◽  
Vol 105 (03) ◽  
pp. 479-486 ◽  
Author(s):  
Ilaria Canobbio ◽  
Silvia Catricalà ◽  
Cesare Balduini ◽  
Paolo Lova ◽  
Gianni Francesco Guidetti ◽  
...  

SummaryWe have recently shown that ADP-induced activation of protein kinase C (PKC) requires the co-stimulation of both P2Y1 and P2Y12 receptors. In this work, we show that inhibition of ADP-mediated phosphorylation of pleckstrin, the main PKC substrate, caused by antagonists of the P2Y12 receptor can be reversed by stimulation of the α2-adrenergic receptor by epinephrine. However, we also observed that addition of epinephrine alone caused a marked phosphorylation of pleckstrin. This effect occurred in the absence of Gq stimulation, as it was not associated to intracellular Ca2+ release. Epinephrine-induced pleckstrin phosphorylation was time- and dose-dependent, and was inhibited by the α2-adrenergic antagonist yohimbin. Phosphorylation of pleckstrin did not occur when platelet stimulation with epinephrine was performed in the presence of the ADP scavenger apyrase, and was suppressed by antagonists of both P2Y1 and P2Y12 ADP receptors. Importantly, no release of dense granules was measured in epinephrine-treated platelets. Addition of epinephrine to platelets was also able to stimulate Rap1b activation. Similarly to pleckstrin phosphorylation, however, this effect was prevented in the presence of apyrase or upon pharmacologic blockade of either P2Y1 or P2Y12 receptors. These results indicate that sub-threshold amounts of ADP in the medium are essential to allow epinephrine stimulation of α2-adrenergic receptor to elicit platelet responses, and reveal a novel synergism among strong stimulation of Gz and sub-threshold stimulation of both Gq and Gi, able to dissociate PKC activation from intracellular Ca2+ mobilisation.

1990 ◽  
Vol 124 (2) ◽  
pp. 225-232 ◽  
Author(s):  
J. J. Hirst ◽  
G. E. Rice ◽  
G. Jenkin ◽  
G. D. Thorburn

ABSTRACT The effect of protein kinase C activation and dibutyryl cyclic AMP on oxytocin secretion by ovine luteal tissue slices was investigated. Several putative regulators of luteal oxytocin secretion were also examined. Oxytocin was secreted by luteal tissue slices at a basal rate of 234·4 ± 32·8 pmol/g per h (n = 24) during 60-min incubations.Activators of protein kinase C: phorbol 12,13-dibutyrate (n = 8), phorbol 12-myristate,13-acetate (n = 4) and 1,2-didecanoylglycerol (n = 5), caused a dose-dependent stimulation of oxytocin secretion in the presence of a calcium ionophore (A23187; 0·2 μmol/l). Phospholipase C (PLC; 50–250 units/l) also caused a dose-dependent stimulation of oxytocin secretion by luteal slices. Phospholipase C-stimulated oxytocin secretion was potentiated by the addition of an inhibitor of diacylglycerol kinase (R59 022; n = 4). These data suggest that the activation of protein kinase C has a role in the stimulation of luteal oxytocin secretion. The results are also consistent with the involvement of protein kinase C in PLC-stimulated oxytocin secretion. The cyclic AMP second messenger system does not appear to be involved in the control of oxytocin secretion by the corpus luteum. Journal of Endocrinology (1990) 124, 225–232


1994 ◽  
Vol 267 (5) ◽  
pp. G754-G763 ◽  
Author(s):  
M. Klin ◽  
M. Smogorzewski ◽  
H. Khilnani ◽  
M. Michnowska ◽  
S. G. Massry

Available data indicate that the liver is a target organ for parathyroid hormone (PTH) and that this effect is most likely mediated by PTH-induced calcium entry into hepatocytes. The present study examined the effects of both PTH-(1-84) and its amino-terminal fragment [PTH-(1-34)] on cytosolic calcium concentration ([Ca2+]i) of hepatocytes and explored the cellular pathways that mediate this potential action of PTH. Both moieties of PTH produced a dose-dependent rise in [Ca2+]i, but the effect of PTH-(1-84) was greater (P < 0.01) than an equimolar amount of PTH-(1-34). This effect required calcium in the medium and was totally [PTH-(1-34)] or partially [PTH-(1-84)] blocked by PTH antagonist ([Nle8,18,Tyr34]bPTH-(7-34)-NH2] and by verapamil or nifedipine. Sodium or chloride channel blockers did not modify this effect. 12-O-tetradecanoylphorbol 13-acetate (TPA), an activator of protein kinase C, dibutyryl adenosine 3',5'-cyclic monophosphate (DBcAMP), and G protein activator also produced a dose-dependent rise in [Ca2+]i. Staurosporine abolished the effect of TPA, and both staurosporine and calphostin C partially inhibited the effect of PTH. Staurosporine and verapamil together produced greater inhibition of PTH action than each alone. Rp-cAMP, a competitive inhibitor of cAMP binding to the R subunit of protein kinase A, and N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), a protein kinase A inhibitor, blocked the effect of both DBcAMP and PTH, but the effect of these agents was greater (P < 0.01) on DBcAMP action. G protein inhibitor and pertussis toxin partially blocked the action of PTH. The data indicate that 1) PTH increases [Ca2+]i of hepatocytes; 2) this action of the hormone is receptor mediated; 3) the predominant pathway for this PTH action is the stimulation of a G protein-adenylate cyclase-cAMP system, which then leads to stimulation of a calcium transport system inhibitable by verapamil or nifedipine or activation of L-type calcium channels; 4) activation of protein kinase C is also involved; and 5) the PTH-induced rise in [Ca2+]i is due, in major parts, to movement of extracellular calcium into the cell.


1985 ◽  
Vol 225 (2) ◽  
pp. 523-527 ◽  
Author(s):  
G van de Werve ◽  
J Proietto ◽  
B Jeanrenaud

In isolated rat adipocytes, tumour-promoting phorbol esters caused (1) dose-dependent stimulation of lipogenesis in the absence of insulin and (2) inhibition of the lipogenic effect of submaximal concentrations of insulin, but without affecting insulin binding. The possible involvement of protein kinase C in insulin action is discussed.


1992 ◽  
Vol 281 (2) ◽  
pp. 465-472 ◽  
Author(s):  
C P D Wheeler-Jones ◽  
T Saermark ◽  
V V Kakkar ◽  
K S Authi

Recent studies have shown that mastoparan, an amphiphilic peptide derived from wasp venom, accelerates guanine nucleotide exchange and GTPase activity of purified GTP-binding proteins. In the present study we have examined the functional consequences of exposure of intact human platelets to mastoparan. Mastoparan promoted rapid (less than or equal to 1 min) dose-dependent increases in 5-hydroxy[14C]tryptamine and beta-thromboglobulin release from dense-granule and alpha-granule populations respectively. The exocytotic response did not result from a lytic effect of mastoparan and occurred in the complete absence of platelet shape change and aggregation. Liberation of [3H]arachidonate and increases in cytosolic [Ca2+] (detected with fura 2) were not observed in platelets stimulated with mastoparan. Similarly, in platelets preloaded with [3H]inositol during reversible electroporation, mastoparan did not cause the accumulation of [3H]inositol phosphates. Mastoparan-induced secretion was unaffected by preincubation with either the protein kinase C inhibitor staurosporine (10 nM-10 microM) or prostacyclin (PGI2; 100 ng/ml) and was not accompanied by phosphorylation of the 45 kDa protein kinase C substrate or the 20 kDa protein normally associated with platelet activation. The G-protein inhibitor guanosine 5′-[beta-thio]diphosphate (GDP[S]; 1 mM) attenuated the secretion induced by mastoparan in both intact and saponin-permeabilized platelets. Encapsulation of GDP[S] during reversible permeabilization inhibited mastoparan-induced secretion, providing evidence for an intracellular action of GDP[S]. In all these studies thrombin (0.05-0.2 unit/ml) elicited characteristic responses, and thrombin-induced secretion was inhibited by staurosporine, PGI2 and GDP[S]. Mastoparan also increased intra-platelet cyclic AMP in a dose-dependent manner. Mastoparan and PGI2 increased 32P incorporation into a protein of approx. 24 kDa, whereas phosphorylation of a 50 kDa substrate was only seen in PGI2-stimulated platelets. These results indicate that mastoparan promotes secretion by a mechanism which does not involve stimulation of phospholipase C and suggest that the secretory event may result either from a direct fusogenic action of mastoparan and/or from stimulation of the putative exocytosis-linked G-protein, Ge.


1985 ◽  
Vol 149 (1) ◽  
pp. 23-27 ◽  
Author(s):  
Willy J. MALAISSE ◽  
Marjorie E. DUNLOP ◽  
Paulo C. F. MATHIAS ◽  
Francine MALAISSE-LAGAE ◽  
Abdullah SENER

1987 ◽  
Vol 89 (2) ◽  
pp. 185-213 ◽  
Author(s):  
S Grinstein ◽  
S Cohen

The effect of elevating cytoplasmic Ca2+ [( Ca2+]i) on the intracellular pH (pHi) of thymic lymphocytes was investigated. In Na+-containing media, treatment of the cells with ionomycin, a divalent cation ionophore, induced a moderate cytoplasmic alkalinization. In the presence of amiloride or in Na+-free media, an acidification was observed. This acidification is at least partly due to H+ (equivalent) uptake in response to membrane hyperpolarization since: it was enhanced by pretreatment with conductive protonophores, it could be mimicked by valinomycin, and it was decreased by depolarization with K+ or gramicidin. In addition, activation of metabolic H+ production also contributes to the acidification. The alkalinization is due to Na+/H+ exchange inasmuch as it is Na+ dependent, amiloride sensitive, and accompanied by H+ efflux and net Na+ gain. A shift in the pHi dependence underlies the activation of the antiport. The effect of [Ca2+]i on Na+/H+ exchange was not associated with redistribution of protein kinase C and was also observed in cells previously depleted of this enzyme. Treatment with ionomycin induced significant cell shrinking. Prevention of shrinking largely eliminated the activation of the antiport. Moreover, a comparable shrinking produced by hypertonic media also activated the antiport. It is concluded that stimulation of Na+/H+ exchange by elevation of [Ca2+]i is due, at least in part, to cell shrinking and does not require stimulation of protein kinase C.


Sign in / Sign up

Export Citation Format

Share Document