Abstract 1464: Cardiac Myosin Binding Protein-C (cMyBP-C) Directly Modulates Actomyosin Binding and Kinetics Independent of LMM and S2 Binding.

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Walid Saber ◽  
Kelly J Begin ◽  
David M Warshaw ◽  
Peter VanBuren

BACKGROUND: While mutations in cMyBP-C constitute a common cause of FHC, its role in sarcomere contraction remains unclear. cMyBP-C binds to actin, titin and the S2 and LMM proteolytic domains of myosin. Through its numerous binding interactions cMyBP-C may act as a tether, restricting myosin and/or actomyosin function. We directly tested this hypothesis in the in vitro motility assay using either whole myosin or the myosin subfragments, HMM and S1 (which lack LMM and LMM-S2, respectively). METHODS AND RESULTS: The motility assay is an in vitro model of muscle contraction in which thin filaments are propelled across a myosin coated surface. The addition of cMyBP-C to the motility assay resulted in a concentration dependent reduction in actin filament velocity when using either whole myosin, HMM or S1, demonstrating that cMyBP-C inhibits thin filament velocity independent of LMM or S2 binding. Using whole myosin and thin filaments reconstituted with troponin/tropomyosin, the addition of cMyBP-C resulted in a 29% reduction in maximal velocity (P=0.002) with no effect on maximal force. At sub-maximal calcium, the pCa50 for velocity was increased (6.64 ± 0.06 vs. control, 6.44 ± 0.03, P=0.003) whereas the pCa50 for force was decreased (6.25 ± 0.09 vs. control, 6.55 ± 0.02, P=0.008). Thin filament activation by myosin strong-binding demonstrated an increased amount of myosin required to half maximally activate the thin filament in the presence of cMyBP-C, indicating that myosin binding to the thin filament is reduced with cMyBP-C. These findings were supported by co-sedimentation experiments which demonstrate that cMyBP-C competes with S1 for actin binding in the presence of ATP, with no effect on S1/actin binding in the absence of ATP. Finally, while the number of cross-bridges interacting with the thin filament is rate limiting for velocity at shorter filament lengths, this was not observed at longer filament lengths indicating that cMyBP- C directly modulates the kinetics of actomyosin. CONCLUSIONS: The effects of cMyBP-C on velocity and force demonstrate that cMyBP-C does not simply act as a tether but likely affects both the kinetics and the recruitment of myosin cross-bridges through its direct interaction with the myosin head and/or the actin filament.

2020 ◽  
pp. jbc.RA120.015863
Author(s):  
Venukumar Vemula ◽  
Tamás Huber ◽  
Marko Ušaj ◽  
Beáta Bugyi ◽  
Alf Mansson

Actin is a major intracellular protein with key functions in cellular motility, signaling and structural rearrangements. Its dynamic behavior, such as polymerisation and depolymerisation of actin filaments in response to intra- and extracellular cues, is regulated by an abundance of actin binding proteins. Out of these, gelsolin is one of the most potent for filament severing. However, myosin motor activity also fragments actin filaments through motor induced forces, suggesting that these two proteins could cooperate to regulate filament dynamics and motility. To test this idea, we used an in vitro motility assay, where actin filaments are propelled by surface-adsorbed heavy meromyosin (HMM) motor fragments. This allows studies of both motility and filament dynamics using isolated proteins. Gelsolin, at both nanomolar and micromolar Ca2+ concentration, appreciably enhanced actin filament severing caused by HMM-induced forces at 1 mM MgATP, an effect that was increased at higher HMM motor density. This finding is consistent with cooperativity between actin filament severing by myosin-induced forces and by gelsolin. We also observed reduced sliding velocity of the HMM-propelled filaments in the presence of gelsolin, providing further support of myosin-gelsolin cooperativity. Total internal reflection fluorescence microscopy based single molecule studies corroborated that the velocity reduction was a direct effect of gelsolin-binding to the filament and revealed different filament severing pattern of stationary and HMM propelled filaments. Overall, the results corroborate cooperative effects between gelsolin-induced alterations in the actin filaments and changes due to myosin motor activity leading to enhanced F-actin severing of possible physiological relevance.


1999 ◽  
Vol 273 (1) ◽  
pp. 12-19 ◽  
Author(s):  
W. Hamelink ◽  
J.G. Zegers ◽  
B.W. Treijtel ◽  
T. Blangé

1984 ◽  
Vol 98 (3) ◽  
pp. 825-833 ◽  
Author(s):  
J W Sanger ◽  
B Mittal ◽  
J M Sanger

To study how contractile proteins become organized into sarcomeric units in striated muscle, we have exposed glycerinated myofibrils to fluorescently labeled actin, alpha-actinin, and tropomyosin. In this in vitro system, alpha-actinin bound to the Z-bands and the binding could not be saturated by prior addition of excess unlabeled alpha-actinin. Conditions known to prevent self-association of alpha-actinin, however, blocked the binding of fluorescently labeled alpha-actinin to Z-bands. When tropomyosin was removed from the myofibrils, alpha-actinin then added to the thin filaments as well as the Z-bands. Actin bound in a doublet pattern to the regions of the myosin filaments where there were free cross-bridges i.e., in that part of the A-band free of interdigitating native thin filaments but not in the center of the A-band which lacks cross-bridges. In the presence of 0.1-0.2 mM ATP, no actin binding occurred. When unlabeled alpha-actinin was added first to myofibrils and then labeled actin was added fluorescence occurred not in a doublet pattern but along the entire length of the myofibril. Tropomyosin did not bind to myofibrils unless the existing tropomyosin was first removed, in which case it added to the thin filaments in the l-band. Tropomyosin did bind, however, to the exogenously added tropomyosin-free actin that localizes as a doublet in the A-band. These results indicate that the alpha-actinin present in Z-bands of myofibrils is fully complexed with actin, but can bind exogenous alpha-actinin and, if actin is added subsequently, the exogenous alpha-actinin in the Z-band will bind the newly formed fluorescent actin filaments. Myofibrillar actin filaments did not increase in length when G-actin was present under polymerizing conditions, nor did they bind any added tropomyosin. These observations are discussed in terms of the structure and in vivo assembly of myofibrils.


1996 ◽  
Vol 70 (4) ◽  
pp. 1881-1892 ◽  
Author(s):  
E. Homsher ◽  
B. Kim ◽  
A. Bobkova ◽  
L.S. Tobacman

2011 ◽  
Vol 100 (3) ◽  
pp. 128a-129a
Author(s):  
Edward P. Debold ◽  
Matthew Turner ◽  
Jordan C. Stout ◽  
Samuel C. Walcott

Biosystems ◽  
2011 ◽  
Vol 103 (1) ◽  
pp. 79-84 ◽  
Author(s):  
Itsuki Kunita ◽  
Shigeru Sakurazawa ◽  
Hajime Honda

2002 ◽  
Vol 282 (5) ◽  
pp. H1665-H1671 ◽  
Author(s):  
Peter VanBuren ◽  
Shari L. Alix ◽  
Joseph A. Gorga ◽  
Kelly J. Begin ◽  
Martin M. LeWinter ◽  
...  

Alteration of troponin T (TnT) isoform expression has been reported in human and animal models of myocardial failure. The two adult beef cardiac TnT isoforms (TnT3 and TnT4) were isolated for comparative functional analysis. Thin filaments were reconstituted containing pure populations of the isoforms. The in vitro motility assay was used to directly compare the effect of the two TnT isoforms on force and unloaded shortening as a function of free calcium. We found no significant differences between the two isoforms in terms of calcium sensitivity, cooperativity, or maximal activation (velocity and force) as assessed in a fully calcium-regulated system. Activation by myosin strong binding was similar for thin filaments containing either of the two TnT isoforms. Whereas maximally activated velocity and cooperativity was depressed at pH 6.5, no difference between thin filaments containing the two isoforms was detected. From the small magnitude of the TnT isoform shifts detected in myocardial failure and the lack of significant mechanical effect detected in the motility assay, variable TnT isoform expression is unlikely to be any functional significance in heart failure.


Sign in / Sign up

Export Citation Format

Share Document