Abstract 5281: Bioluminescence Imaging of X-Ray Visible Microencapsulated Mesenchymal Stem Cells for Cell Based Therapy of Peripheral Arterial Disease

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Dorota A Kedziorek ◽  
Piotr Walczak ◽  
Yingli Fu ◽  
Nicole Azene ◽  
Aravind Arepally ◽  
...  

Introduction: Therapeutic angiogenesis in Peripheral Arterial Disease (PAD) using stem cell therapy is potentially complicated by immunorejection. To overcome this problem, microen-capsulation using the alginate-poly-L-lysine (PLL)-alginate (APA) method was developed to provide a protective porous bubble to block antibodies but allow exchange of small molecules. Recently, we have developed a method to enable X-ray detection of these capsules. However, cell survival within the capsules could not be determined. Plus PLL can be mildly cytotoxic. In the present study, we combined reporter gene methods to verify cell survival with X-ray detection of the microcapsules in a rabbit PAD model and studied the PLL impact on cell viability. Methods: Rabbit mesenchymal stem cells (MSCs) were transfected with triple fusion (TF) reporter gene for bioluminescence (firefly luciferase), fluorescence (red fluorescent protein) and PET (truncated thymidine kinase). TF-MSCs were encapsulated in the perfluorooctyl bromide (PFOB) capsules to enable computed tomographic detection. Capsule crosslinking was performed with three PLL concentrations, i.e., 0.005%, 0.025% and 0.05%. Bioluminescent imaging (BLI) was used to monitor cells survival for one week in vitro and after intramuscular injection in vivo . Results: Serial in vitro BLI enabled the detection of viable encapsulated MSCs without detrimental signal degradation (~13% decrease of BLI signal intensity after PFOB encapsulation comparing to equal number of naked MSCs). PLL did not result in cell death; higher PLL concentrations were correlated with stronger BLI signal. BLI signal production was only slightly reduced by second layer of alginate (~80% for 0.05% PLL). In vivo BLI demonstrated the detection of naked, APA, and PFOB-encapsulated TF-MSCs. X-ray imaging enabled PFOB microcapsules detection relative to vasculature. Conclusion: BLI allows monitoring of encapsulated cells survival. PLL concentrations ≤ 0.05% appear safe for encapsulated cells with higher concentration being associated with enhanced crosslinking and capsule stability. MSCs expressing TF reporter in PFOB microcapsules enables dual monitoring of cell delivery/capsule tracking by X-ray imaging and cell viability with BLI.

Stem Cells ◽  
2012 ◽  
Vol 30 (6) ◽  
pp. 1286-1296 ◽  
Author(s):  
Dorota A. Kedziorek ◽  
Lawrence V. Hofmann ◽  
Yingli Fu ◽  
Wesley D. Gilson ◽  
Kenyatta M. Cosby ◽  
...  

2018 ◽  
Vol 68 (6) ◽  
pp. 137S-151S.e2 ◽  
Author(s):  
Tatiana Chadid ◽  
Andrew Morris ◽  
Alexandra Surowiec ◽  
Scott Robinson ◽  
Maiko Sasaki ◽  
...  

2021 ◽  
Vol 74 (3) ◽  
pp. e297-e298
Author(s):  
Mira Shoukry ◽  
Samuel Nussbaum ◽  
Karen Jeong ◽  
Ralph Perkerson ◽  
Takahisa Kanekiyo ◽  
...  

2010 ◽  
Vol 55 (10) ◽  
pp. A216.E2049 ◽  
Author(s):  
Yingli Fu ◽  
Dorota Kedziorek ◽  
Steven Shea ◽  
Ronald Ouwerkerk ◽  
Gary Huang ◽  
...  

2015 ◽  
Vol 309 (5) ◽  
pp. H790-H803 ◽  
Author(s):  
Ayotunde O. Dokun ◽  
Lingdan Chen ◽  
Mitsuharu Okutsu ◽  
Charles R. Farber ◽  
Surovi Hazarika ◽  
...  

In prior studies from multiple groups, outcomes following experimental peripheral arterial disease (PAD) differed considerably across inbred mouse strains. Similarly, in humans with PAD, disease outcomes differ, even when there are similarities in risk factors, disease anatomy, arteriosclerotic burden, and hemodynamic measures. Previously, we identified a locus on mouse chromosome 7, limb salvage-associated quantitative trait locus 1 (LSq-1), which was sufficient to modify outcomes following experimental PAD. We compared expression of genes within LSq-1 in Balb/c mice, which normally show poor outcomes following experimental PAD, with that in C57Bl/6 mice, which normally show favorable outcomes, and found that a disintegrin and metalloproteinase gene 12 ( ADAM12) had the most differential expression. Augmentation of ADAM12 expression in vivo improved outcomes following experimental PAD in Balb/c mice, whereas knockdown of ADAM12 made outcomes worse in C57Bl/6 mice. In vitro, ADAM12 expression modulates endothelial cell proliferation, survival, and angiogenesis in ischemia, and this appeared to be dependent on tyrosine kinase with Ig-like and EGF-like domain 2 (Tie2) activation. ADAM12 is sufficient to modify PAD severity in mice, and this likely occurs through regulation of Tie2.


2020 ◽  
Vol 15 (6) ◽  
pp. 1761-1773
Author(s):  
Tatiana S Zaitseva ◽  
Guang Yang ◽  
Dimitris Dionyssiou ◽  
Maedeh Zamani ◽  
Steve Sawamura ◽  
...  

Background: Chemical modification of mRNA (mmRNA) substantially improves their stability and translational efficiency within cells. Nanofibrillar collagen scaffolds were previously shown to enable the spatially localized delivery and temporally controlled release of mmRNA encoding HGF both in vitro and in vivo. Materials & methods: Herein we developed an improved slow-releasing HGF mmRNA scaffold and tested its therapeutic efficacy in a porcine model of peripheral arterial disease. Results & conclusion: The HGF mmRNA was released from scaffolds in a temporally controlled fashion in vitro with preserved transfection activity. The mmRNA scaffolds improved vascular regeneration when sutured to the ligated porcine femoral artery. These studies validate the therapeutic potential of HGF mmRNA delivery from nanofibrillar scaffolds for treatment of peripheral arterial disease.


Sign in / Sign up

Export Citation Format

Share Document