genetic modifier
Recently Published Documents


TOTAL DOCUMENTS

257
(FIVE YEARS 29)

H-INDEX

31
(FIVE YEARS 0)

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 126
Author(s):  
Theresa Lüth ◽  
Joshua Laβ ◽  
Susen Schaake ◽  
Inken Wohlers ◽  
Jelena Pozojevic ◽  
...  

Background: X-linked dystonia-parkinsonism (XDP) is an adult-onset neurodegenerative disorder characterized by progressive dystonia and parkinsonism. It is caused by a SINE-VNTR-Alu (SVA) retrotransposon insertion in the TAF1 gene with a polymorphic (CCCTCT)n domain that acts as a genetic modifier of disease onset and expressivity. Methods: Herein, we used Nanopore sequencing to investigate SVA genetic variability and methylation. We used blood-derived DNA from 96 XDP patients for amplicon-based deep Nanopore sequencing and validated it with fragment analysis which was performed using fluorescence-based PCR. To detect methylation from blood- and brain-derived DNA, we used a Cas9-targeted approach. Results: High concordance was observed for hexanucleotide repeat numbers detected with Nanopore sequencing and fragment analysis. Within the SVA locus, there was no difference in genetic variability other than variations of the repeat motif between patients. We detected high CpG methylation frequency (MF) of the SVA and flanking regions (mean MF = 0.94, SD = ±0.12). Our preliminary results suggest only subtle differences between the XDP patient and the control in predicted enhancer sites directly flanking the SVA locus. Conclusions: Nanopore sequencing can reliably detect SVA hexanucleotide repeat numbers, methylation and, lastly, variation in the repeat motif.



2021 ◽  
Vol 23 (1) ◽  
pp. 429
Author(s):  
Victor Lamin ◽  
Joseph Verry ◽  
Isaac Eigner-Bybee ◽  
Jordan D. Fuqua ◽  
Thomas Wong ◽  
...  

Both Type 1 diabetes mellitus (DM1) and type 2 diabetes mellitus (DM2) are associated with an increased risk of limb amputation in peripheral arterial disease (PAD). How diabetes contributes to poor PAD outcomes is poorly understood but may occur through different mechanisms in DM1 and DM2. Previously, we identified a disintegrin and metalloproteinase gene 12 (ADAM12) as a key genetic modifier of post-ischemic perfusion recovery. In an experimental PAD, we showed that ADAM12 is regulated by miR-29a and this regulation is impaired in ischemic endothelial cells in DM1, contributing to poor perfusion recovery. Here we investigated whether miR-29a regulation of ADAM12 is altered in experimental PAD in the setting of DM2. We also explored whether modulation of miR-29a and ADAM12 expression can improve perfusion recovery and limb function in mice with DM2. Our result showed that in the ischemic limb of mice with DM2, miR-29a expression is poorly downregulated and ADAM12 upregulation is impaired. Inhibition of miR-29a and overexpression of ADAM12 improved perfusion recovery, reduced skeletal muscle injury, improved muscle function, and increased cleaved Tie 2 and AKT phosphorylation. Thus, inhibition of miR-29a and or augmentation of ADAM12 improves experimental PAD outcomes in DM2 likely through modulation of Tie 2 and AKT signalling.



2021 ◽  
Author(s):  
Kevin A. Hope ◽  
Alexys R. Berman ◽  
Randall T. Peterson ◽  
Clement Y Chow

NGLY1 deficiency, a rare disease with no effective treatment, is caused by autosomal recessive, loss-of-function mutations in the N-glycanase 1 (NGLY1) gene and is characterized by global developmental delay, hypotonia, alacrima, and seizures. We used an adult Drosophila model of NGLY1 deficiency to conduct an in vivo, unbiased, small molecule, repurposing screen of FDA-approved drugs to identify therapeutic compounds. Seventeen molecules rescued lethality in a patient-specific NGLY1 deficiency model, including multiple serotonin and dopamine modulators. Exclusive dNGLY1 expression in serotonin and dopamine neurons, in an otherwise dNGLY1-null fly, was sufficient to rescue lethality. Further, genetic modifier and transcriptomic data supports the importance of serotonin signaling in NGLY1 deficiency. Connectivity Map analysis identified glycogen synthase kinase 3 (GSK3) inhibition as a potential therapeutic mechanism for NGLY1 deficiency, which we experimentally validated with TWS119 and lithium. Strikingly, GSK3 inhibitors and a serotonin modulator rescued size defects in dNGLY1 deficient larvae upon proteasome inhibition, suggesting that these compounds act through NRF1, a transcription factor that regulates proteasome expression. This study reveals the importance of the serotonin pathway in NGLY1 deficiency, and serotonin modulators or GSK3 inhibitors may be effective therapeutics for this rare disease.



Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 953-953
Author(s):  
Xunde Wang ◽  
Mickias Tegegn ◽  
Fayaz Seifuddin ◽  
Stephan Menzel ◽  
Hamel Patel ◽  
...  

Abstract Background: Acute pain, the most prominent complication of sickle cell disease (SCD), results from vasoocclusion triggered by sickling of deoxygenated red blood cells (RBCs). A key factor influencing HbS oxygenation is the intracellular concentration of 2,3- diphosphoglycerate (2,3-DPG). 2,3-DPG, an intermediate substrate in the glycolytic pathway, decreases oxygen binding and stabilizes the deoxygenated hemoglobin. Pyruvate kinase (gene PKLR, protein PKR) is a rate-limiting enzyme in glycolysis; variants in PKLR may affect PKR activity, 2,3-DPG levels in RBCs, subsequent frequency of sickling and acute pain episodes (APE). There is thus a strong biological basis for exploring PKLR as a candidate gene affecting acute pain in SCD. Methods: The study population for genetic association consists of 2 cohorts: 1) 242 adults with HbSS from King's College Hospital (KCH), London, UK, with complete hospitalisation records over 10 years (2004-2013 inclusive) as the "discovery" cohort; 2) 977 children with HbSS or HbSb 0 thalassemia from the Silent Infarct Transfusion (SIT) trial, with a 3-year history of severe vasoocclusive pain based on hospitalization, as the "validation" cohort. Both studies were approved by the local Institutional Review Boards at KCH and Vanderbilt University Medical Center, respectively. An independent cohort comprises 52 adults with SCD enrolled under 3 protocols - NCT00011648, NCT00081523, and NCT03685721 - approved by the NHLBI Review Board (NIH), for evaluation of imbalance in allele expression. Genome scan for the KCH cohort was performed using llumina's Infinium "MEGA" chip (1.7m markers). The SIT DNA samples were genotyped using Illumina HumanHap650Y array 5 (661K markers) or Illumina Infinium HumanOmni1-Quad array (1.1m markers). The results were quality controlled followed by genotype imputation based on the 1000 Genomes Project phase 3 data. An annualised "hospitalisation rate" as a measure of pain incidence rate, was calculated by dividing the number of hospital admissions for severe acute pain by the number of years of observation for KCH and SIT cohorts (Fig A). We performed association analysis with common SNPs at PKLR locus using data from our genome-wide SNP set and a linear mixed modelling approach incorporating a genetic relatedness matrix to take account of relatedness, plus sex and age as fixed covariates. We corrected for multiple testing after quantifying the linkage disequilibrium (LD) within PKLR and used this to calculate appropriate significance levels. For the PKLR region and hospitalisation rate, the modified significance level was p<0.001268 for the discovery (KCH) cohort. For the allele expression assays, a synonymous variant, rs1052176 (R596R), in exon 11 of PKLR acted as a marker of relative expression levels of the 2 alleles of the gene. Allele specific expression was carried using the Bio-Rad digital droplet PCR system. Results: 7 of 47 variants evaluated in PKLR were associated with hospitalization rate (LnLnHospRate) in the discovery cohort: intron 4 - rs071053, and intron 2 - rs8177970, rs116244351, rs114455416, rs12741350, rs3020781, and rs8177964). All 7 were validated in Fisher's meta-analyses of the KCH and the SIT cohorts using p<0.0071 as threshold to correct for multiple testing (Fig B). We examined the pairwise LD between PKLR variants, and found all the intron 2 variants in tight LD, while R596R belongs to another LD block (Fig C). 52 SCD individuals had the R596R variant, of which 29 were heterozygous and 23 homozygous for the intron 2 haplotype associated with APE in SCD. We performed a Wilcoxon rank sum test and compared the variation in PKLR expression between the 2 alleles in subjects homozygous and heterozygous for the wildtype intron 2 haplotype, using genomic DNA as internal control for each subject. The results reveal a significant deviation from the expected expression ratio in those heterozygous for the intron 2 haplotype (mean 0.2073, +/- SD 0.0135) when compared with to those without the variant (mean 0.1239, +/- SD 0.0682), p=0.0297 (Fig D). Conclusion: Intronic variants of PKLR are associated with hospitalization rate for acute pain episodes in adults and children with SCD. We show that the intronic variants are likely to influence acute pain by affecting expression of the PKLR gene using allele-specific expression analyses, although the causal variant is unclear. These results support PKLR as a genetic modifier of SCD. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.



Genes ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1554
Author(s):  
Frauke Stanke ◽  
Tim Becker ◽  
Haide Susanne Ismer ◽  
Inga Dunsche ◽  
Silke Hedtfeld ◽  
...  

CFTR encodes for a chloride and bicarbonate channel expressed at the apical membrane of polarized epithelial cells. Transepithelial sodium transport mediated by the amiloride-sensitive sodium channel ENaC is thought to contribute to the manifestation of CF disease. Thus, ENaC is a therapeutic target in CF and a valid cystic fibrosis modifier gene. We have characterized SCNN1B as a genetic modifier in the three independent patient cohorts of F508del-CFTR homozygotes. We could identify a regulatory element at SCNN1B to the genomic segment rs168748-rs2303153-rs4968000 by fine-mapping (Pbest = 0.0177), consistently observing the risk allele rs2303153-C and the contrasting benign allele rs2303153-G in all three patient cohorts. Furthermore, our results show that expression levels of SCNN1B are associated with rs2303153 genotype in intestinal epithelia (P = 0.003). Our data confirm that the well-established biological role of SCNN1B can be recognized by an association study on informative endophenotypes in the rare disease cystic fibrosis and calls attention to reproducible results in association studies obtained from small, albeit carefully characterized patient populations.



2021 ◽  
Author(s):  
Tobias Trojan ◽  
Miguel A. Alcazar ◽  
Gregor Fink ◽  
Jan C. Thomassen ◽  
Maxine von Maessenhausen ◽  
...  

Abstract Background: Transforming Growth Factor-b1 (TGF-b1) is a genetic modifier in patients with cystic fibrosis (CF). Several single nucleotide polymorphisms (SNPs) of TGF-b1 are associated with neutrophilic inflammation, lung fibrosis und loss of pulmonary function. Aim: The aim of this study was to assess the relationship between genetic TGF-b1 polymorphisms and pulmonary disease progression in CF patients. Furthermore, the effect of TGF-b1 polymorphisms on inflammatory cytokines in sputum were investigated. Methods: 56 CF-patients and 62 controls were genotyped for three relevant SNPs in their TGF-b1 sequence using the SNaPshot® technique. Individual “slopes” in forced expiratory volume in 1 second (FEV1) for all patients were calculated by using documented lung function values of the previous five years. The status of Pseudomonas aeruginosa (Pa) infection was determined. Sputum concentrations of the protease elastase, the serine protease inhibitor elafin and the cytokines IL-1b, IL-8, IL-6, TNF-α were measured after a standardized sputum induction and processing. Results: The homozygous TT genotype at codon 10 was associated with a lower rate of chronic Pa infection (p<0.05). The heterozygous GC genotype at codon 25 was associated with lower lung function decline (p<0.05). Patients with homozygous TT genotype at the promotor SNP showed higher levels of TNF-α (p<0,05). Higher levels of TGF-b1 in plasma were associated with a more rapid FEV1 decline over five years (p<0.05). Conclusions: Our results suggest that polymorphisms in the TGF-b1 gene have an effect on lung function decline, Pa infection as well as levels of inflammatory cytokines. Genotyping these polymorphisms could potentially be used to identify CF patients with higher risk of disease progression. TGF-b1 inhibition could potentially be developed as a new therapeutic option to modulate CF lung disease.



PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0256276
Author(s):  
Nafisa Neault ◽  
Sean O’Reilly ◽  
Aiman Tariq Baig ◽  
Julio Plaza-Diaz ◽  
Mehrdad Azimi ◽  
...  

Myotonic Dystrophy Type 1 (DM1) is the most common form of adult muscular dystrophy (~1:8000). In DM1, expansion of CTG trinucleotide repeats in the 3’ untranslated region of the dystrophia myotonica protein kinase (DMPK) gene results in DMPK mRNA hairpin structures which aggregate as insoluble ribonuclear foci and sequester several RNA-binding proteins. The resulting sequestration and misregulation of important splicing factors, such as muscleblind-like 1 (MBNL1), causes the aberrant expression of fetal transcripts for several genes that contribute to the disease phenotype. Previous work has shown that antisense oligonucleotide-mediated disaggregation of the intranuclear foci has the potential to reverse downstream anomalies. To explore whether the nuclear foci are, to some extent, controlled by cell signalling pathways, we have performed a screen using a small interfering RNA (siRNA) library targeting 518 protein kinases to look at kinomic modulation of foci integrity. RNA foci were visualized by in situ hybridization of a fluorescent-tagged (CAG)10 probe directed towards the expanded DMPK mRNA and the cross-sectional area and number of foci per nuclei were recorded. From our screen, we have identified PACT (protein kinase R (PKR) activator) as a novel modulator of foci integrity and have shown that PACT knockdown can both increase MBNL1 protein levels; however, these changes are not suffcient for significant correction of downstream spliceopathies.



2021 ◽  
Vol 129 (Suppl_1) ◽  
Author(s):  
Julie A Fischer ◽  
Megan Puckelwartz ◽  
Matthew Wolf ◽  
Mattia Quattrocelli ◽  
Lorenzo Pesce ◽  
...  

Background: Cardiomyopathy is a highly heritable disorder that carries a significant risk for heart failure and arrhythmias. Most inherited cardiomyopathies are characterized by variable penetrance and expressivity, which in part arises from additional genetic variation, known as genetic modifiers. Methods and Results: Genomic profiling of human cardiomyopathy cases identified enriched genetic variation in the gene MTCH2. Specifically, a truncating variant was found to be overrepresented in patients with cardiomyopathy compared to controls. MTCH2 encodes a mitochondrial carrier protein that has a role in regulating oxidative phosphorylation. To investigate fundamental mechanisms by which MTCH2 contributes to cardiac and metabolic phenotypes, we generated a knockdown model of the Drosophila MTCH2 ortholog, Mtch. We found that cardiac-specific Mtch reduction in flies produced heart tube dilation and reduced function as well as a shortened life span, documenting a clear role Mtch in the myocardium. Metabolomic profiling demonstrated cardiac deficiency of Mtch lowered the flux of glucose-derived metabolites to the citric acid cycle associated with reduced downstream oxygen consumption and ATP synthesis, causing an energy deficit. We generated a deletion of MTCH2 using gene editing in HEK293 cells. Similar to the fly model, these cells demonstrated reduced oxygen consumption in the presence of glucose, but not fatty acids, and had a higher level of inhibitory phosphorylation of pyruvate dehydrogenase, a critical regulator of glucose metabolism. These data suggest MTCH2 influences the efficiency of glucose oxidation and substrate usage, an important mode of cardiac energy generation, especially in the setting of heart failure. Conclusions: We identified MTCH2 as a modifier of the cardiomyopathy phenotype in humans. Reduction of MTCH2 resulted in impaired cardiac function with reduced oxygen consumption and increased glycolysis in a substrate dependent manner. Since failed hearts are more dependent on glycolysis, these data support that reduction of MTCH2 promotes heart failure and provides a mechanism by which MTCH2 acts as a deleterious genetic modifier in heart failure.



2021 ◽  
Author(s):  
William R. Milligan ◽  
Guy Amster ◽  
Guy Sella

AbstractMutation rates and spectra differ among human populations. Here, we examine whether this variation could be explained by evolution at mutation modifiers. To this end, we consider genetic modifier sites at which mutations, “mutator alleles”, increase genome-wide mutation rates and model their evolution under purifying selection due to the additional deleterious mutations that they cause, genetic drift, and demographic processes. We solve the model analytically for a constant population size and characterize how evolution at modifier sites impacts variation in mutation rates within and among populations. We then use simulations to study the effects of modifier sites under a plausible demographic model for Africans and Europeans. When comparing populations that evolve independently, weakly selected modifier sites (2Nes ≈ 1), which evolve slowly, contribute the most to variation in mutation rates. In contrast, when populations recently split from a common ancestral population, strongly selected modifier sites (2Nes ≫ 1), which evolve rapidly, contribute the most to variation between them. Moreover, a modest number of modifier sites (e.g., 10 per mutation type in the standard classification into 96 types) subject to moderate to strong selection (2Nes > 1) could account for the variation in mutation rates observed among human populations. If such modifier sites indeed underlie differences among populations, they should also cause variation in mutation rates within populations and their effects should be detectable in pedigree studies.



BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Alexandra Dorman ◽  
Ilona Binenbaum ◽  
Hanifa J. Abu-Toamih Atamni ◽  
Aristotelis Chatziioannou ◽  
Ian Tomlinson ◽  
...  

Abstract Background Familial adenomatous polyposis is an inherited genetic disease, characterized by colorectal polyps. It is caused by inactivating mutations in the Adenomatous polyposis coli (Apc) gene. Mice carrying a nonsense mutation in the Apc gene at R850, which is designated ApcMin/+ (Multiple intestinal neoplasia), develop intestinal adenomas. Several genetic modifier loci of Min (Mom) were previously mapped, but so far, most of the underlying genes have not been identified. To identify novel modifier loci associated with ApcMin/+, we performed quantitative trait loci (QTL) analysis for polyp development using 49 F1 crosses between different Collaborative Cross (CC) lines and C57BL/6 J-ApcMin/+mice. The CC population is a genetic reference panel of recombinant inbred lines, each line independently descended from eight genetically diverse founder strains. C57BL/6 J-ApcMin/+ males were mated with females from 49 CC lines. F1 offspring were terminated at 23 weeks and polyp counts from three sub-regions (SB1–3) of small intestinal and colon were recorded. Results The number of polyps in all these sub-regions and colon varied significantly between the different CC lines. At 95% genome-wide significance, we mapped nine novel QTL for variation in polyp number, with distinct QTL associated with each intestinal sub-region. QTL confidence intervals varied in width between 2.63–17.79 Mb. We extracted all genes in the mapped QTL at 90 and 95% CI levels using the BioInfoMiner online platform to extract, significantly enriched pathways and key linker genes, that act as regulatory and orchestrators of the phenotypic landscape associated with the ApcMin/+ mutation. Conclusions Genomic structure of the CC lines has allowed us to identify novel modifiers and confirmed some of the previously mapped modifiers. Key genes involved mainly in metabolic and immunological processes were identified. Future steps in this analysis will be to identify regulatory elements – and possible epistatic effects – located in the mapped QTL.



Sign in / Sign up

Export Citation Format

Share Document